Nothing
#' @title New Log Likelihood Gradient of Logistic Box-Cox
#' @description This function gives the gradient of the log likelihood of the Box-Cox model.
#' Main purpose is to be an input to the maxLik function.
#' @param init initial values for the intercept and slope coefficients
#' @param ixx continuous predictor
#' @param iyy binary outcome
#' @param iw sample weight
#' @param iZZ covariates to be incorporated in the model
#' @return the gradient of the log likelihood estimate for the coefficients in `bb`
#' @export
ScoreFun_new <- function(init, ixx, iyy, iw, iZZ){
lamda <- init[3]
myp <- length(init)
if(myp > 3){
mycovbeta <- matrix(init[4:myp], nrow = myp-3, ncol = 1)
if(lamda != 0){
iv <- (ixx^lamda - 1)/lamda
} else{
iv = log(ixx)
}
iS <- init[1] + init[2]*iv + iZZ%*%mycovbeta
eiS <- exp(-iS)
iP <- matrix(1/(1 + eiS), nrow = 1)
if(lamda != 0){
de.lamda <- (ixx^lamda*log(ixx) - iv)/lamda # dv/dlambda
} else{
de.lamda <- log(ixx)^2/2
}
c(sum(iw*(iyy - iP)), sum(iw*((iyy - iP)*iv)), sum(iw*((iyy - iP)*init[2]*de.lamda)),
(iw*(iyy-iP))%*%iZZ)/sum(iw)
}else{
if(lamda != 0){
iv <- (ixx^lamda - 1)/lamda
} else{
iv = log(ixx)
}
iS <- init[1] + init[2]*iv
eiS <- exp(-iS)
iP <- matrix(1/(1 + eiS), nrow = 1)
if(lamda != 0){
de.lamda <- (ixx^lamda*log(ixx) - iv)/lamda # dv/dlambda
} else{
de.lamda <- log(ixx)^2/2
}
c(sum(iw*(iyy - iP)), sum(iw*((iyy - iP)*iv)), sum(iw*((iyy - iP)*init[2]*de.lamda)))/sum(iw)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.