R/lcc_internal.R

Defines functions lccInternal

Documented in lccInternal

#######################################################################
#                                                                     #
# Package: lcc                                                        #
#                                                                     #
# File: lcc_internal.R                                                #
# Contains: lccInternal function                                      #
#                                                                     #
# Written by Thiago de Paula Oliveira                                 #
# copyright (c) 2017-18, Thiago P. Oliveira                           #
#                                                                     #
# First version: 11/10/2017                                           #
# Last update: 29/07/2019                                             #
# License: GNU General Public License version 2 (June, 1991) or later #
#                                                                     #
#######################################################################
##' @title Internal Function to Prepare \code{lcc} Objects
##'
##' @description This is an internally called function used to prepare
##'   \code{lcc} objects for calculate the longitudinal concordance
##'   correlation, longitudinal Pearson correlation, longitudinal bias
##'   corrector, and plotting
##'
##' @usage NULL
##'
##' @author Thiago de Paula Oliveira,
##'   \email{thiago.paula.oliveira@@alumni.usp.br} and Rafael de Andrade Moral,
##'   \email{rafael_moral@@yahoo.com.br}
##'
##' @keywords internal
lccInternal <- function(model, q_f, q_r, tk, interaction, covar,
                        pdmat, diffbeta, time_lcc, ci, percentileMet,
                        alpha, nboot, labels, var.class, weights.form,
                        show.warnings, components, lme.control,
                        method.init, numCore) {
  tk2<-tk
  tk.plot2 <- tk2
  tk.plot <- tk
  if(is.null(time_lcc)==FALSE){
    if(is.null(time_lcc$time)){
      tk.plot <- time_lcc(time=model$data$time, from=time_lcc$from,
                          to=time_lcc$to, n=time_lcc$n)
    }else{
      tk.plot <- time_lcc(time=time_lcc$time, from=time_lcc$from,
                          to=time_lcc$to, n=time_lcc$n)
    }
  }
  ldb <- length(diffbeta)
  nd<-length(summary(model)$modelStruct$varStruct)
  if(nd<=1){
    if(ci==FALSE) {
      if(ldb == 1) {
        rho <- lccWrapper(model = model, q_f = q_f, n.delta = 1,
                          tk = tk.plot,
                          diffbeta = as.numeric(diffbeta[[1]]))
          if(components==TRUE){
            rho.pearson<-lpcWrapper(model = model, q_f = q_f,
                                    tk = tk.plot, n.delta = 1)
          Cb<-laWrapper(model = model, q_f = q_f, n.delta = 1,
                        tk = tk.plot,
                        diffbeta = as.numeric(diffbeta[[1]]))
        }
        summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta, tk = tk,
                                tk.plot = tk.plot, tk.plot2 = tk.plot2,
                                rho = rho, rho.pearson = rho.pearson,
                                Cb=Cb, model = model, ldb=ldb,
                                ci = FALSE, components = components)
      } else {
        rho <- list()
        for(i in 1:ldb)  rho[[i]] <- lccWrapper(model = model,
                                                q_f = q_f, n.delta = 1,
                                                tk = tk.plot,
                                                diffbeta = as.numeric(diffbeta[[i]]))
        rho.ret <- data.frame(do.call(cbind.data.frame, rho))
        if(components==TRUE){
          rho.pearson <- list()
          Cb<-list()
          for(i in 1:ldb)  rho.pearson[[i]] <- lpcWrapper(model = model,
                                                          q_f = q_f,
                                                          n.delta = 1,
                                                          tk = tk.plot)
          for(i in 1:ldb) Cb[[i]]<- laWrapper(model = model, q_f = q_f,
                                              n.delta = 1,
                                              tk = tk.plot,
                                              diffbeta = as.numeric(diffbeta[[i]]))
          rho.pearson.ret <- data.frame(do.call(cbind.data.frame,
                                                rho.pearson))
          Cb.ret <- data.frame(do.call(cbind.data.frame, Cb))
        }
        summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta, tk = tk,
                                 tk.plot = tk.plot, tk.plot2 = tk.plot2,
                                rho = rho.ret,
                                rho.pearson = rho.pearson.ret,
                                Cb = Cb.ret, model = model,
                                ldb = ldb, ci = FALSE,
                                 components = components)
      }
    }else{
      CI<-ciBuilder(model = model, nboot = nboot, q_f = q_f, q_r = q_r,
                    interaction = interaction, covar = covar,
                    pdmat = pdmat, var.class = var.class,
                    weights.form = weights.form,
                    show.warnings = show.warnings, tk = tk.plot,
                    diffbeta = diffbeta, ldb = ldb, tk.plot=tk.plot,
                    tk.plot2 = tk.plot2, ci=TRUE,
                    percentileMet = percentileMet,
                    alpha = alpha, components = components,
                    lme.control = lme.control,
                    method.init = method.init, numCore = numCore)
      ENV.LCC<-CI$ENV.LCC
      ENV.LPC<-CI$ENV.LPC
      ENV.Cb<-CI$ENV.Cb
      summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta, tk = tk,
                              tk.plot = tk.plot, tk.plot2 = tk.plot2,
                              rho = CI$rho, rho.pearson = CI$LPC,
                              Cb = CI$Cb, ldb = ldb, model = model,
                              ENV.LCC = CI$ENV.LCC,
                              ENV.LPC = CI$ENV.LPC,
                              ENV.Cb = CI$ENV.Cb,
                              ci = TRUE, components = components)
    }
  }else{
    if(ci==FALSE) {
      if(ldb == 1) {
        rho <- lccWrapper(model = model, q_f = q_f, n.delta = 1,
                          tk = tk.plot,
                          diffbeta = as.numeric(diffbeta[[1]]))
        if(components==TRUE){
          rho.pearson <- lpcWrapper(model = model, q_f = q_f,
                                    n.delta = 1,  tk = tk.plot)
          Cb<-laWrapper(model = model, q_f = q_f, n.delta = 1,
                        tk = tk.plot,
                        diffbeta = as.numeric(diffbeta[[1]]))
        }
        summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta,
                                tk = tk, tk.plot = tk.plot,
                                tk.plot2 = tk.plot2, rho = rho,
                                rho.pearson = rho.pearson, Cb = Cb,
                                model = model, ldb = ldb, ci = FALSE,
                                components = components)
      } else {
        rho <- list()
        for(i in 1:ldb)  rho[[i]] <- lccWrapper(model = model,
                                                q_f = q_f, n.delta = i,
                                                tk = tk.plot,
                                                diffbeta = as.numeric(diffbeta[[i]]))
        rho.ret <- data.frame(do.call(cbind.data.frame, rho))
        if(components == TRUE){
          rho.pearson <- list()
          Cb<- list()
          for(i in 1:ldb)  rho.pearson[[i]] <- lpcWrapper(model = model,
                                                          q_f = q_f,
                                                          n.delta = i,
                                                          tk = tk.plot)
          for(i in 1:ldb) Cb[[i]]<-laWrapper(model = model, q_f = q_f,
                                             n.delta = i, tk = tk.plot,
                                             diffbeta = as.numeric(diffbeta[[i]]))
          rho.pearson.ret <- data.frame(do.call(cbind.data.frame, rho.pearson))
          Cb.ret <- data.frame(do.call(cbind.data.frame, Cb))
        }
        summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta, tk = tk,
                                 tk.plot = tk.plot, tk.plot2 = tk.plot2,
                                rho = rho.ret,
                                rho.pearson = rho.pearson.ret,
                                 Cb = Cb.ret, model = model, ldb = ldb,
                                 ci = FALSE, components = components)
      }
    }else{
      CI<-ciBuilder(model = model, nboot = nboot, q_f = q_f, q_r = q_r,
                    interaction = interaction, covar = covar,
                    pdmat = pdmat, var.class = var.class,
                    weights.form = weights.form,
                    show.warnings = show.warnings, tk = tk.plot,
                    diffbeta = diffbeta, ldb = ldb, tk.plot=tk.plot,
                    tk.plot2 = tk.plot2, ci=TRUE,
                    percentileMet = percentileMet, alpha =alpha,
                    components = components, lme.control = lme.control,
                    method.init = method.init,  numCore = numCore)
      ENV.LCC<-CI$ENV.LCC
      ENV.LPC<-CI$ENV.LPC
      ENV.Cb<-CI$ENV.Cb
      summary.lcc<-lccSummary(q_f = q_f, diffbeta = diffbeta, tk = tk,
                              tk.plot = tk.plot, tk.plot2 = tk.plot2,
                              rho = CI$rho, rho.pearson = CI$LPC,
                              Cb = CI$Cb, ldb = ldb, model = model,
                              ENV.LCC = CI$ENV.LCC,
                              ENV.LPC = CI$ENV.LPC,
                              ENV.Cb = CI$ENV.Cb,
                              ci = TRUE, components = components)
   }
  }
  #=====================================================================
  internal_lcc<-list("Summary.lcc"=summary.lcc,
                     "tk.plot" = tk.plot, "tk.plot2" = tk.plot2,
                     "ldb" = ldb,  "ci" = ci, "components" = components,
                     "nd"=nd, "qf" = q_f, "qr" = q_r,
                     "interaction" = interaction, "covar" = covar)
  #=====================================================================
  if(ldb == 1){
    if(ci==FALSE){
      internal_lcc$rho <- rho
      if(components == TRUE){
        internal_lcc$rho.pearson <- rho.pearson
        internal_lcc$Cb <- Cb
      }
    }else{
      internal_lcc$rho <- CI$rho
      internal_lcc$ENV.LCC <- CI$ENV.LCC
      internal_lcc$ENV.LPC <- CI$ENV.LPC
      internal_lcc$ENV.LA <- CI$ENV.Cb
      internal_lcc$alpha <- alpha
      internal_lcc$nboot <- nboot
      if(components == TRUE){
        internal_lcc$rho.pearson <- CI$LPC
        internal_lcc$Cb <- CI$Cb
      }
    }
  }else{
    if(ci==FALSE){
      internal_lcc$rho <- rho.ret
      if(components == TRUE){
        internal_lcc$rho.pearson <- rho.pearson.ret
        internal_lcc$Cb <- Cb.ret
      }
    }else{
      internal_lcc$rho <- CI$rho
      internal_lcc$ENV.LCC <- CI$ENV.LCC
      internal_lcc$ENV.LPC <- CI$ENV.LPC
      internal_lcc$ENV.LA <- CI$ENV.Cb
      internal_lcc$alpha <- alpha
      internal_lcc$nboot <- nboot
      if(components == TRUE){
        internal_lcc$rho.pearson <- CI$LPC
        internal_lcc$Cb <- CI$Cb
      }
    }
  }
  return(invisible(internal_lcc))
}

Try the lcc package in your browser

Any scripts or data that you put into this service are public.

lcc documentation built on Feb. 26, 2021, 5:07 p.m.