top.topic.words | R Documentation |
This function takes a model fitted using
lda.collapsed.gibbs.sampler
and returns a matrix of the
top words in each topic.
top.topic.words(topics, num.words = 20, by.score = FALSE)
top.topic.documents(document_sums, num.documents = 20, alpha = 0.1)
topics |
For |
num.words |
For |
document_sums |
For |
num.documents |
For |
by.score |
If by.score is set to |
alpha |
The scalar value of the Dirichlet hyperparameter for topic proportions. |
For top.topic.words
, a num.words \times K
character matrix where each column contains
the top words for that topic.
For top.topic.documents
, a num.documents \times K
integer matrix where each column contains
the top documents for that topic. The entries in the matrix are
column-indexed references into document_sums
.
Jonathan Chang (slycoder@gmail.com)
Blei, David M. and Ng, Andrew and Jordan, Michael. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.
lda.collapsed.gibbs.sampler
for the format of topics.
predictive.distribution
demonstrates another use for a fitted
topic matrix.
## From demo(lda).
data(cora.documents)
data(cora.vocab)
K <- 10 ## Num clusters
result <- lda.collapsed.gibbs.sampler(cora.documents,
K, ## Num clusters
cora.vocab,
25, ## Num iterations
0.1,
0.1)
## Get the top words in the cluster
top.words <- top.topic.words(result$topics, 5, by.score=TRUE)
## top.words:
## [,1] [,2] [,3] [,4] [,5]
## [1,] "decision" "network" "planning" "learning" "design"
## [2,] "learning" "time" "visual" "networks" "logic"
## [3,] "tree" "networks" "model" "neural" "search"
## [4,] "trees" "algorithm" "memory" "system" "learning"
## [5,] "classification" "data" "system" "reinforcement" "systems"
## [,6] [,7] [,8] [,9] [,10]
## [1,] "learning" "models" "belief" "genetic" "research"
## [2,] "search" "networks" "model" "search" "reasoning"
## [3,] "crossover" "bayesian" "theory" "optimization" "grant"
## [4,] "algorithm" "data" "distribution" "evolutionary" "science"
## [5,] "complexity" "hidden" "markov" "function" "supported"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.