Nothing
###############################################################################
# Author: Giorgio A. Spedicato
###############################################################################
#calculates the last survival status annuity due APV for a couple of policyholders aged
#30 / 40
coupleLifeTables=list(soa08Act,soa08Act)
axyzn(tablesList=coupleLifeTables,x=c(30,40),n=10,m=1)
#Consider a 20-year term insurance on (30), face value equal to 1000.
#Calculate the gross level yearly premium allowing for 30 flat expenses and
#mainteance yearly expenses equal to 15\% of G.
#G*axn(soa08Act,x=30)=1000*Axn(soa08Act)+30+0.15*G*axn(soa08Act,x=30)
G=(1000*Axn(soa08Act,30)+30)/(0.85*axn(soa08Act,x=30))
G
#Sample a vector of size 100K from $K_25$ and compute summary statistics.
K25=rLife(n = 10^5,object = soa08Act,x=25,type="Kx")
summary(K25)
exn(soa08Act,25)
#hist(K25)
#Find the smallest premium to charge to a policyholder aged 65 that wish
#to purchase an annuity due in order to limit the probability of loss to 25\%
APV=axn(soa08Act, 65)
axn65=rLifeContingencies(n=10000,lifecontingency="axn",object=soa08Act,x=65,parallel=TRUE)
mean(axn65)
APV
quantile(axn65,1-0.25) #percentile premium
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.