get.IC: Compute an information criterion

Description Usage Arguments Details Value Author(s) References

View source: R/ic.R

Description

Given the fitted parameter values for a log-linear model, compute an information criterion.

Usage

1
get.IC(predictors, ddat, ic, beta)

Arguments

predictors

A character vector of predictors of the form "c1", "c2" for main effects, or "c12" for an interaction. The predictors to be used in a log-linear model. For example, "c1", "c2" for main effects, or "c12" for an interaction.

ddat

A data frame that is the design matrix for a log-linear model.

ic

The information criterion to be computed. Currently the AIC, AICc, BIC, BICpi are implemented.

beta

The vector of log-linear coefficients that were previously estimated.

Details

Computes the conditional multinomial likelihood and uses it to compute the specified information criterion

Value

The value of the information criterion

Author(s)

Zach Kurtz

References

Thesis of Zach Kurtz (2014), Carnegie Mellon University, Statistics

Anderson DR and Burnham KP (1999). "Understanding information criteria for selection among capture-recapture or ring recovery models." Bird Study, 46(S1), pp. S14-S21.


lllcrc documentation built on May 30, 2017, 7:10 a.m.

Search within the lllcrc package
Search all R packages, documentation and source code