Nothing
jackknife <-
function(formula, data=NULL){
###################################################
## Checks for function inputs ##
###################################################
if(inherits(formula, "formula")==FALSE){
stop("The input model must be a formula.\n")
}
full.model.frame <- model.frame(formula, data=data, na.action = na.pass) #get model variables in data.frame
resp <- model.response(full.model.frame) #get the response variable
n <- length(resp) #get the number of observations
if(is.matrix(resp)!=TRUE && is.vector(resp)!=TRUE){
stop("Response must be a vector or matrix.\n")
}
else if((dim(resp)[1]==0 || dim(resp)[2]==0) && length(resp)==0){
stop("Response must have entries.\n")
}
else if(mode(resp)!="numeric"){
stop("Response must be of type numeric.\n")
}
else if(anyNA(resp)==TRUE){
stop("Response must not have any missing values.\n")
}
modelMat <- model.matrix(formula, data=data) #get the model matrix
if(dim(modelMat)[2] <= 0){
stop("The model has no predictors or intercept.\n")
}
modelqr <- qr(modelMat) #perform QR decomposition on model matrix for checks
model.pivot <- modelqr$pivot[1:modelqr$rank]
if (ncol(modelMat) > modelqr$rank) {
warning("The design matrix isn't full column rank.\n")
}
if(dim(modelMat)[1]!=length(resp)){
stop("Predictors must not have any missing values.\n")
}
#######################################################
## Least Squares Fit ##
#######################################################
obsDataregFit <- lm(formula, data=data) #fit the linear model specified in formula input
estParam <- matrix(obsDataregFit$coef, ncol=1) #keep the param. estimates in a vector
obsDataResid <- as.vector(residuals(obsDataregFit)) #keep the original residuals
ParamNames <- names(obsDataregFit$coefficients) #keep the coefficient name/association
rownames(estParam) <- ParamNames #name the rows for the parameters so we know what they are
modelMat <- model.matrix(obsDataregFit) #model matrix (X)
hatMat <- solve(t(modelMat) %*% modelMat) %*% t(modelMat) #projection matrix (X^TX)^-1 X^T
######################################################
## Bootstrap ##
######################################################
##Objects to keep Bootstrap Observations
bootEstParam <- matrix(NA, nrow=n, ncol=dim(estParam)[1]) #bootstrap param. estimates
colnames(bootEstParam) <- ParamNames
for(i in 1:n){
bootEstParam[i,]<- as.vector(solve(t(modelMat[-i,]) %*% modelMat[-i,]) %*%
t(modelMat[-i,]) %*% matrix(resp[-i], ncol=1)) #boot param est
}
#####################################################
## Returns
#####################################################
structure(invisible(list(bootEstParam=bootEstParam,
origEstParam=estParam)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.