The functions in this package implement the safety monitoring procedures proposed in the paper titled "Detection of unusual increases in MRI lesion counts in individual multiple sclerosis patients" by Zhao, Y., Li, D.K.B., Petkau, A.J., Riddehough, A., Traboulsee, A., published in Journal of the American Statistical Association in 2013. The procedure first models longitudinally collected count variables with a negative binomial mixedeffect regression model. To account for the correlation among repeated measures from the same patient, the model has subjectspecific random intercept, which can be modelled with a gamma or lognormal distributions. One can also choose the semiparametric option which does not assume any distribution for the random effect. These mixedeffect models could be useful beyond the application of the safety monitoring. The maximum likelihood methods are used to estimate the unknown fixed effect parameters of the model. Based on the fitted model, the personalized activity index is computed for each patient. Lastly, this package is companion to R package lmeNBBayes, which contains the functions to compute the Personalized Activity Index in Bayesian framework.
Package details 


Author  Yinshan Zhao and Yumi Kondo (with contributions from Steven G. Johnson, Rudolf Schuerer and Brian Gough on the integration subroutines) 
Date of publication  20150202 22:40:23 
Maintainer  Yumi Kondo <[email protected]> 
License  GPL (>= 2) 
Version  1.3 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.