Description Usage Arguments Details Author(s) References See Also Examples
This function fits the semi-parametric negative binomial mixed-effect AR(1) model in the formulation described Zhao et al (2013).
The conditional distribution of response counts given random effect is modelled by Negative Binomial as described in description of lmeNB
.
The conditional dependence among the response counts of a subject is modeled with AR(1) structure.
The semiparametric procedure is employed for random effects.
See descriptions of lmeNB
.
1 | fitSemiAR1(formula, data, ID, Vcode,p.ini = NULL, IPRT = TRUE, deps = 0.001, maxit=100)
|
formula |
See |
data |
See |
ID |
See |
Vcode |
See |
p.ini |
See |
IPRT |
See |
deps |
See |
maxit |
See |
The algorithm repeats the following four steps until a stoping criterion is satisfied:
Step 1) Estimate the coefficients of covariates by the method of weighted least squares.
Step 2) Approximate the distribution of the random effect G[i] by γ[i].
Step 3) Estimate α and δ using the psudo-profile likelihood.
This step calls optim
to minimize the negative psudo log-likelihood with respect to \log(α)) and logit(δ). The numerical integration is carried out using adaptive quadrature. When missing visits are present, the likelihood is approximated (See Zhao et al. 2013 for details).
Step 4) Estimate Var(G[i]) by the medhod of moment and update the weights.
All the computations are done in R
.
Zhao, Y. and Kondo, Y.
Detection of unusual increases in MRI lesion counts in individual multiple sclerosis patients. (2013) Zhao, Y., Li, D.K.B., Petkau, A.J., Riddehough, A., Traboulsee, A., Journal of the American Statistical Association.
The main function to fit the Negative Binomial mixed-effect model:
lmeNB
,
The functions to fit the other models:
fitParaIND
,
fitParaAR1
,
fitSemiIND
,
The subroutines of index.batch
to compute the conditional probability index:
jCP.ar1
,
CP1.ar1
,
MCCP.ar1
,
CP.ar1.se
,
CP.se
,
jCP
,
The functions to generate simulated datasets:
rNBME.R
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | ## Not run:
## ================================================================================ ##
## generate a data based on the semi-parametric negative binomial
## mixed-effect AR(1) model.
## Under this model, the response counts follows the negative binomial:
## Y_ij | G_i = g_i ~ NB(r_ij,p_i) where r_ij = exp(X^T beta)/a , p_i =1/(a*g_i+1)
## G_i is from unknown distribution.
## For simulation purpose, we generate the sample of gi from
## the mixture of three gamma distribuions.
## The adjacent repeated measures of the same subjects are correlated
## with correlation structure:
## cov(Y_ij,Y_ij'|G_i=g_i)=d^{j-j'} E(Y_ij')*(a*g_i^2+g_i)
# log(a) = -0.5, log(th)=1.3, logit(delta) = -0.2
# b0 = 0.5, no covariates;
loga <- -0.5
logtheta <- 1.3
logitd <- -0.2
b0 <- 0.5
# 80 subjects each with 5 scans
n <- 80
sn <- 5
## generate a sample of size B from the mixture of three gamma distribution:
p1 <- 0.5
p2 <- 0.3
B <- 1000
sampledG<- c(
rgamma(n=p1*B,scale=1,shape=10),
rgamma(n=p2*B,scale=3,shape=5),
rgamma(n=(1-p1-p2)*B,scale=5,shape=5)
)
## mean is set to 1;
sampledG <- sampledG/mean(sampledG)
logvarG <- log(var(sampledG))
## hist(sampledG)
DT4 <- rNBME.R(gdist = "NoN",
n = n, ## the total number of subjectss
sn = sn,
u1 = rep(exp(b0),sn),
u2 = rep(exp(b0),sn),
a = exp(loga),
d = exp(logitd)/(1+exp(logitd)),
othrp = sampledG
)
Vcode<-rep(-1:(sn-2),n) # scan number -1, 0, 1, 2, 3
ID <- DT4$id
new <- Vcode > 0
dt4<-data.frame(CEL=DT4$y)
## ================================================================================ ##
## [1] Fit the negative binomial mixed-effect AR(1) model
## where random effects is from the gamma distribution
re.gamma.ar1 <- fitParaAR1(formula=CEL~1,data=dt4,ID=ID,
Vcode=Vcode,
p.ini=c(loga,logtheta,logitd,b0),
## log(a), log(theta), logit(d), b0
RE="G",
IPRT=TRUE)
Psum<-index.batch(olmeNB=re.gamma.ar1, data=dt4,ID=ID,Vcode=Vcode,
labelnp=new,qfun="sum", IPRT=TRUE,i.se=FALSE)
## [2] Fit the negative binomial mixed-effect AR(1) model
## where random effects is from the log-normal distribution
re.logn.ar1<-fitParaAR1(formula=CEL~1,data=dt4,ID=ID,
Vcode=Vcode,
p.ini=c(loga,logtheta,logitd,b0),
## log(a), log(theta), logit(d), b0
RE="N", IPRT=TRUE)
## Requires some time
Psum<-index.batch(olmeNB=re.logn.ar1,data=dt4,ID=ID,Vcode=Vcode,
labelnp=new,qfun="sum", IPRT=TRUE)
## [3] Fit the negative binomial independent model
## where random effects is from the lognormal distribution
re.logn.ind<-fitParaIND(formula=CEL~1,data=dt4,ID=ID,
RE="N",
p.ini=c(loga,logtheta,b0),
IPRT=TRUE)
Psum <- index.batch(olmeNB=re.logn.ind,data=dt4,ID=ID,
labelnp=new,qfun="sum", IPRT=TRUE)
## [4] Fit the semi-parametric negative binomial AR(1) model
## This model is closest to the true model
logvarG <- log(var(sampledG))
re.semi.ar1 <- fitSemiAR1(formula=CEL~1,data=dt4,ID=ID,
p.ini=c(loga, logvarG, logitd,b0),Vcode=Vcode)
## compute the estimates of the conditional probabilities
## with sum of the new repeated measure as a summary statistics
Psum <- index.batch(olmeNB=re.semi.ar1, labelnp=new,data=dt4,ID=ID,Vcode=Vcode,
qfun="sum", IPRT=TRUE,i.se=TRUE)
## compute the estimates of the conditional probabilities
## with max of the new repeated measure as a summary statistics
Pmax <- index.batch(olmeNB=re.semi.ar1, labelnp=new,qfun="max",data=dt4,ID=ID,Vcode=Vcode,
IPRT=TRUE,i.se=TRUE)
## Which patient's estimated probabilities
## based on the sum and max statistics disagrees the most?
( IDBigDif <- which(rank(abs(Pmax$condProbSummary[,1]-Psum$condProbSummary[,1]))==80) )
## Show the patient's CEL counts
dt4$CEL[ID==IDBigDif]
## Show the estimated conditional probabilities based on the sum summary statistics
Psum$condProbSummary[IDBigDif,1]
## Show the estimated conditional probabilities based on the max summary statistics
Pmax$condProbSummary[IDBigDif,1]
## [5] Fit the semi-parametric negative binomial independent model
re.semi.ind <- fitSemiIND(formula=CEL~1,data=dt4,ID=ID, p.ini=c(loga, logvarG, b0))
Psum <- index.batch(olmeNB=re.semi.ind, labelnp=new,
data=dt4,ID=ID, qfun="sum", IPRT=TRUE,i.se=TRUE)
## ======================================================================== ##
## == Which model performed the best in terms of the estimation of beta0 == ##
## ======================================================================== ##
getpoints <- function(y,estb0,sdb0=NULL,crit=qnorm(0.975))
{
points(estb0,y,col="blue",pch=16)
if (!is.null(sdb0))
{
points(c(estb0-crit*sdb0,estb0+crit*sdb0),rep(y,2),col="red",type="l")
}
}
ordermethod <- c("gamma.ar1","logn.ar1","logn.ind","semi.ar1","semi.ind")
estb0s <- c(
re.gamma.ar1$est[4,1],
re.logn.ar1$est[4,1],
re.logn.ind$est[3,1],
re.semi.ar1$est[4],
re.semi.ind$est[3]
)
## The true beta0 is:
b0
c <- 1.1
plot(0,0,type="n",xlim=c(min(estb0s)-0.5,max(estb0s)*c),ylim=c(0,7),yaxt="n",
main <- "Simulated from the AR(1) model \n with random effect ~ a semi-parametric distribution")
legend("topright",
legend=ordermethod)
abline(v=b0,lty=3)
## [1] gamma.ar1
sdb0 <- re.gamma.ar1$est[4,2]
getpoints(6,estb0s[1],sdb0)
## [2] logn.ar1
sdb0 <- re.logn.ar1$est[4,2]
getpoints(5,estb0s[2],sdb0)
## [3] logn.ind
sdb0 <- re.logn.ind$est[3,2]
getpoints(4,estb0s[3],sdb0)
## [4] semi.ar1
getpoints(3,estb0s[4])
## [5] semi.ind
getpoints(2,estb0s[5])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.