fitParaAR1: Performs the maximum likelihood estimation for the negative...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

This function fits a negative binomial mixed-effect AR(1) model in the formulation described Zhao et al. (2013). The conditional distribution of response counts given random effect is modelled by Negative Binomial as described in description of lmeNB. The conditional dependence among the response counts of a subject is modeled with AR(1) structure. The random effects are modelled with either gamma or log-normal distributions. See descriptions of lmeNB.

Usage

1
2
fitParaAR1(formula, data, ID, Vcode, p.ini = NULL, IPRT = FALSE, 
           RE = "G", i.tol = 1e-75, o.tol = 0.001) 

Arguments

formula

See lmeNB.

data

See lmeNB.

ID

See lmeNB.

Vcode

See lmeNB.

p.ini

A vector of length 4 + # covariates, containing the initial values for the parameters (log(α), log(θ), logit(δ), β[0], β[1]...). NULL is accepted.

IPRT

See lmeNB.

RE

See fitParaIND.

i.tol

See lmeNB.

o.tol

See lmeNB.

Details

fitParaAR1 calls optim to minimize the negative log-likelihood of the negative binomial model with respect to the model parameters: (log(α), log(θ), logit(δ), β[0], β[1]...). The Nelder-Mead algorithm is employed. The log-likelihood is obtained by marginalizing out the random effects. The numerical integration is carried out using adaptive quadrature. When missing visits are present, an approximation of the likelihood is used (see Zhao et al. (2013) for details.) All the computations are done in R.

Value

opt

See lmeNB.

nlk

See lmeNB.

V

See lmeNB.

est

See lmeNB.

AR

TRUE

Author(s)

Zhao, Y. and Kondo, Y.

References

Detection of unusual increases in MRI lesion counts in individual multiple sclerosis patients. (2013) Zhao, Y., Li, D.K.B., Petkau, A.J., Riddehough, A., Traboulsee, A., Journal of the American Statistical Association.

See Also

The main function to fit the Negative Binomial mixed-effect model: lmeNB,

The functions to fit the other models: fitParaIND, fitSemiIND, fitSemiAR1,

The subroutines of index.batch to compute the conditional probability index: jCP.ar1, CP1.ar1, MCCP.ar1, CP.ar1.se, CP.se, jCP,

The functions to generate simulated datasets: rNBME.R.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
## Not run: 

## ==================================================================================
## generate a data based on the negative binomial mixed-effect AR(1) model.
## Under this model, the response counts follows the negative binomial:
## Y_ij | G_i = g_i ~ NB(r_ij,p_i) where r_ij = exp(X^T beta)/a , p_i =1/(a*g_i+1)
## with G_i ~ Gamma(scale=th,shape=1/th)
## 
## The adjacent repeated measures of the same subject are correlated 
## with correlation structure:
## cov(Y_ij,Y_ij'|G_i=g_i)=d^{j-j'} E(Y_ij')*(a*g_i^2+g_i)  

loga <- -0.5
logtheta<- 1.3
logitd <- -0.2
b0 <- 0.5 ## no covariates; 
## 80 subjects each with 5 scans
n <- 80
sn <- 5

set.seed(1)
DT2 <-  rNBME.R(gdist = "G",
               n = n, ## 	the total number of subjectss	       
	       sn = sn,
	       th=exp(logtheta),
               u1 = rep(exp(b0),sn),
	       u2 = rep(exp(b0),sn),
	       a = exp(loga),
	       d = exp(logitd)/(1+exp(logitd))
	      )
Vcode <- rep(-1:(sn-2),n) # scan number -1, 0, 1, 2, 3
ID <- DT2$id
new <- Vcode > 0
dt2 <- data.frame(CEL=DT2$y)

## ================================================================================

## 1) Fit the negative binomial mixed-effect AR(1) model 
## where the random effects are from the gamma distribution
## This is the true model

re.gamma.ar1 <- fitParaAR1(formula=CEL~1,data=dt2,ID=ID,
		           Vcode=Vcode, 
		           p.ini=c(loga,logtheta,logitd,b0), 
		           ## log(a), log(theta), logit(d), b0
		           RE="G", 
		           IPRT=TRUE) 



## compute the estimates of the conditional probabilities 
## with sum of the new repeated measure as a summary statistics 
## Note C=TRUE with i.tol=1E-3 options compute the index faster
## i.se=TRUE requires more time
Psum <- index.batch(olmeNB=re.gamma.ar1,data=dt2,ID=ID,Vcode=Vcode,
	 	   labelnp=new,qfun="sum", IPRT=TRUE,i.se=FALSE,C=TRUE,i.tol=1E-3)  
		 

## compute the estimates of the conditional probabilities 
## with max of the new repeated measure as a summary statistics 
Pmax <-index.batch(olmeNB=re.gamma.ar1,data=dt2,ID=ID,Vcode=Vcode, 
                  labelnp=new,qfun="max", IPRT=TRUE,i.se=FALSE,C=TRUE,i.tol=1E-3)

## Which patient's estimated probabilities based on the sum and max 
## statistics disagrees the most?
( IDBigDif <- which(rank(abs(Pmax$condProbSummary[,1]-Psum$condProbSummary[,1]))==80) )
## Show the patient's CEL counts  
dt2$CEL[ID==IDBigDif]
## Show the estimated conditional probabilities based on the sum summary statistics
Psum$condProbSummary[IDBigDif,]
## Show the estimated conditional probabilities based on the max summary statistics
Pmax$condProbSummary[IDBigDif,]


## 2) Fit the negative binomial mixed-effect AR(1) model 
## where random effects is from the log-normal distribution

re.logn.ar1 <- fitParaAR1(formula=CEL~1,data=dt2,ID=ID,
		          Vcode=Vcode, 
		          p.ini=c(loga,logtheta,logitd,b0), ## log(a), log(theta), logit(d), b0
   		          RE="N",IPRT=TRUE)

Psum <- index.batch(olmeNB=re.logn.ar1,data=dt2,ID=ID,Vcode=Vcode, 
                    labelnp=new,qfun="sum", IPRT=TRUE,i.se=FALSE,C=TRUE,i.tol=1E-3) 
re.logn.ar1$Psum <- Psum


## 3) Fit the negative binomial independent model 
## where random effects are from the gamma distribution
re.gamma.ind <- fitParaIND(formula=CEL~1,data=dt2,ID=ID, 
                           RE="G", 
	         	   p.ini=c(loga,logtheta,b0), 
		           IPRT=TRUE)

Psum <- index.batch(olmeNB=re.gamma.ind,data=dt2,ID=ID, 
                    labelnp=new,qfun="sum", IPRT=TRUE,i.se=TRUE)  



## 4) Fit the negative binomial independent model 
## where random effects are from the lognormal distribution
re.logn.ind <- fitParaIND(formula=CEL~1,data=dt2,ID=ID, 
                          RE="N", 			   	
		          p.ini=c(loga,logtheta,b0), 		
		          IPRT=TRUE)

Psum <- index.batch(olmeNB=re.logn.ind, data=dt2,ID=ID, 
                   labelnp=new,qfun="sum", IPRT=TRUE,i.se=TRUE) 


## 5) Fit the semi-parametric negative binomial AR(1) model 

logvarG <- -0.5
re.semi.ar1 <- fitSemiAR1(formula=CEL~1,data=dt2,ID=ID, 
                          p.ini=c(loga, logvarG, logitd,b0),Vcode=Vcode)
Psum <- index.batch(olmeNB=re.semi.ar1,data=dt2,ID=ID, Vcode=Vcode,
	       	    labelnp=new,qfun="sum", IPRT=TRUE,i.se=FALSE)  


## 6) Fit the semi-parametric negative binomial independent model 
re.semi.ind <- fitSemiIND(formula=CEL~1,data=dt2,ID=ID, p.ini=c(loga, logvarG, b0))
Psum <- index.batch(olmeNB=re.semi.ind,data=dt2,ID=ID,  
                   labelnp=new, qfun="sum", IPRT=TRUE,i.se=FALSE) 


## ======================================================================== ##
## == Which model performed the best in terms of the estimation of beta0 == ##
## ======================================================================== ##

getpoints <- function(y,estb0,sdb0=NULL,crit=qnorm(0.975))
{	
points(estb0,y,col="blue",pch=16)
if (!is.null(sdb0))
{
points(c(estb0-crit*sdb0,estb0+crit*sdb0),rep(y,2),col="red",type="l")
}
}
ordermethod <- c("gamma.ar1","logn.ar1","gamma.ind","logn.ind","semi.ar1","semi.ind")

estb0s <- c(
re.gamma.ar1$est[4,1],
re.logn.ar1$est[4,1],
re.gamma.ind$est[3,1],
re.logn.ind$est[3,1],
re.semi.ar1$est[4],
re.semi.ind$est[3]
)

## The true beta0 is:
b0
c <- 1.1
plot(0,0,type="n",xlim=c(min(estb0s)-0.5,max(estb0s)*c),ylim=c(0,7),yaxt="n",
main="Simulated from the AR(1) model \n with random effect ~ gamma")

legend("topright",
	legend=ordermethod)
abline(v=b0,lty=3)

## 1) gamma.ar1
sdb0 <- re.gamma.ar1$est[4,2]
getpoints(6,estb0s[1],sdb0)

## 2)logn.ar1
sdb0 <- re.logn.ar1$est[4,2] 
getpoints(5,estb0s[2],sdb0)

## 3) gamma.ind
sdb0 <- re.gamma.ind$est[3,2]
getpoints(4,estb0s[3],sdb0)

## 4) logn.ind
sdb0 <- re.logn.ind$est[3,2]
getpoints(3,estb0s[4],sdb0)

## 5) semi.ar1
getpoints(2,estb0s[5])

## 6) semi.ind
getpoints(1,estb0s[6])



## End(Not run)

lmeNB documentation built on May 2, 2019, 3:34 p.m.

Related to fitParaAR1 in lmeNB...