volvff | R Documentation |
An R-function for the variable form-factor volume model and a function for computing bias-corrected volumes augmented with parameter uncertainty from a model fitted using nlme.
volvff(dbh,h,theta=NA,logita=NA,lambda=NA) predvff(data,mod,p=0.05,varMethod="taylor",biasCorr="none",nrep=500)
dbh |
vector of individual tree diameters, cm |
h |
vector of individual tree heights (m), of same length as |
theta, logita, lambda |
The parameters |
data |
A data set including variables |
mod |
A variable form-factor model fitted using |
p |
The probability used in constructiong the confidence intervals for tree-level volumes and total volume. Symmetric 100(1-p)% confidence intervals are returned. |
varMethod |
Either |
biasCorr |
Either |
nrep |
The number of replicates in the Monte Carlo simulation when
|
The variance-form-factor function is of form
v(D,H,a,λ)=π \frac{\exp(a)}{1+\exp(a)} R(D,H,λ)^2 H
where a is the logit-transformed form factor and R(D,H,λ) is the stem radius at stump height, which is approximated using
R(D,H,λ)=w(H,λ)\frac{D}{2}+(1-w(H,λ))\frac{H}{H-B}\frac{D}{2}
where the weight is taken from the right tail of the logit transformation
w(H,λ)=2-2\frac{\exp≤ft( \frac{H-B}{\exp(λ)}\right)}{1+\exp≤ft( \frac{H-B}{\exp(λ)}\right)}
Parameter uncertainty is reported because the same realized errors are used always when a model based on certain model fitting data is used; therefore those errors behave in practice like bias. Variance for total volume is computed as sum of all elements of the variance-covariance matrix of prediction errors of the mean.
Function volvff
returns a vector of tree volumes (in liters) that is of same length as
vector dbh
. In addition, attribute grad
returns the Jacobian, which is used
in nlme fitting for computing the derivatives of the model with respect to parameters,
and in approximating the parameter uncertainty when varMethod="taylor"
.
Function predvff
returns a list with following objects
totvol |
Total volume of the trees of |
totvolvar |
The estimated variance of |
totvolci |
The estimated 100(1-p)% confidence interval of |
And attributes
trees |
A data frame of including tree-level volumes, their variance and 95% confidence intervals. |
varmu |
The variance-covariance matrix of prediction errors, taking into account theparameter uncertainty. |
Lauri Mehtatalo <lauri.mehtatalo@luke.fi>
Kangas A., Pitkanen T., Mehtatalo L., Heikkinen J. (xxxx) Mixed linear and non-linear tree volume models with regionally varying parameters
## Not run: library(lmfor) data(treevol) treevol$formfactor<-treevol$v/volvff(treevol$dbh,treevol$h,logita=100,lambda=log(0.2)) treevol$logitff<-log((treevol$formfactor)/(1-(treevol$formfactor))) ptrees<-treevol[treevol$species=="pine",] mod.init<-lm(logitff~I(1/h)+h+dbh+I(h*dbh)+I(1/(h*dbh))+ dataset+dataset:dbh+dataset:h,data=ptrees) mod<-nlme(v~volvff(dbh,h,logita=logita,lambda=lambda), fixed=list(logita~I(1/h)+h+dbh+I(h*dbh)+I(1/(h*dbh))+dataset+ dataset:dbh+dataset:h+soil+temp_sum, lambda~1), random=logita~1|stand/plot, start=c(coef(mod.init),rep(0,2),log(0.2)), data=ptrees, weights=varComb(varIdent(form=~1 |dataset),varPower()), method="ML", # control=list(msVerbose=TRUE), # verbose=TRUE ) pred1<-predvff(ptrees,mod,varMethod="simul",biasCorr="integrate") pred1$totvol pred1$totvolvar pred1$totvolci head(attributes(pred1)$trees) pred2<-predvff(ptrees,mod,varMethod="taylor",biasCorr="twopoint") pred2$totvol pred2$totvolvar pred2$totvolci head(attributes(pred2)$trees) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.