recweib: Recovery of Weibull parameters of tree diameter distribution...

View source: R/recweib2.R

recweibR Documentation

Recovery of Weibull parameters of tree diameter distribution using measured stand characteristics

Description

The function finds such parameters shape and scale of the Weibull diameter distribution that yield the given basal area, number of stems and weighted/unweighted mean/median diameter. Weibull function can be assumed either as the unweighted or basal-area weighted distribution.

Usage

recweib(G, N, D, Dtype, init=NA, trace=FALSE, weight=0,minshape=0.01)
func.recweib1(lshape, G, N, D, Dtype, trace=FALSE,minshape=0.01)
func.recweib2(lshape, G, N, D, Dtype, trace=FALSE,minshape=0.01)

Arguments

G

The basal area in m^2/ha, scalar.

N

The number of stems per ha, scalar.

D

Either A: The arithmetic mean diameter, B: The basal-area weighted mean diameter, C: median diameter or D: The basal-area weighted median diameter of the stand, cm.

Dtype

One of characters "A", "B", "C", "D", indicating which type of mean diameter was given in argument D.

init

The initial guess for the shape parameter (scalar). If not given, a simple model (see Siipilehto and Mehtatalo 2013, appendix) is used to compute the initial guess for the unweighted case; value 4 is used as default in the basal-area weighted case.

trace

if TRUE, some output on the convergence of the algorithm is printed on the screen.

weight

if weight=0 (the default), Weibull function is assumed as the unweighted density. If weight=2, weibull function is assumed as the basal-area weighted density. Weight is also the theoretical infimum of the shape parameter.

lshape

logarithmic shape parameter, (log(shape+minshape)).

minshape

Minimum difference of the shape parameter and its theoretical infimum.

Details

The recovery is based on the solution of the equation DQMW^2(shape,scale(D,shape))-DQM^2= 0, where DQMW(shape, scale(D,shape)) expresses the DQM of the assumed Weibull distribution for the given value of the shape parameter and using the scale parameter that corresponds to the given combination of the shape parameter and the mean/median diameter given in D. The function which is set to zero is implemented in functions func.recweib1 (unweighted case) and func.recweib2 (ba-weighted case). The Gauss-Newton method implemented in NRnum is used for solving the equation.

Value

A list of components

shape, scale

The value of the shape and scale parameters at the solution.

G, N, D, Dtype

The input arguments.

val

The value of the equation DQMW^2(shape,scale(D,shape))-DQM^2 at the solution

Author(s)

Lauri Mehtatalo <lauri.mehtatalo@uef.fi> and Jouni Siipilehto

References

Siipilehto, J. and Mehtatalo, L. 2013. Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland. Silva Fennica 47(4), article id 1057. doi: 10.14214/sf.1057

Mehtatalo, Lauri and Lappi, Juha 2020a. Biometry for Forestry and Environmental Data: with examples in R. New York: Chapman and Hall/CRC. 426 p. doi: 10.1201/9780429173462

Mehtatalo, Lauri and Lappi, Juha 2020b. Biometry for Forestry and Environmental Data: with examples in R. Full Versions of The Web Examples. Available at http://www.biombook.org.

See Also

The mean diameters for options A, B, C and D are computed by functions documented at scaleDMean1.

Examples

# Demonstration with 3 example stands.
# Example stand 1. Uneven-aged stand in Finland (Vesijako, Kailankulma, stand no 1):
G<-17.0
N<-1844
D<-7.9
DG<-19.6
DM<-8.1
DGM<-19.1
recweib(G,N,D,"A")            #  1.066123 8.099707
recweib(G,N,DG,"B")           # 1.19316  8.799652
recweib(G,N,DM,"C")           # 1.601795 10.18257
recweib(G,N,DGM,"D")          # 1.095979 8.280063
recweib(G,N,D,"A",weight=2)   # 2.590354 21.66398
recweib(G,N,DG,"B",weight=2)  # 2.563892 22.07575
recweib(G,N,DM,"C",weight=2)  # 2.998385 17.74291
recweib(G,N,DGM,"D",weight=2) # 2.566621 22.03183



# Example 2. Even aged stand in Finland (see Siipilehto & Mehtatalo, Fig 2):
G_ha<-9.6
N_ha<-949
D<-11.0
DG<-12.3
DM<-11.1
DGM<-12.4  
recweib(G_ha,N_ha,D,"A") # 4.465673 12.05919
recweib(G_ha,N_ha,DG,"B") # 4.463991 12.05912
recweib(G_ha,N_ha,DM,"C")  # 4.410773 12.05949
recweib(G_ha,N_ha,DGM,"D") # 4.448272 12.05924


# Example 3. Assumed peaked even aged stand (see Siipilehto & Mehtatalo, Fig 1):
G_ha<-10.0
N_ha<-1300
D<-9.89
DG<-10.0
DM<-9.89
DGM<-10.0  
recweib(G_ha,N_ha,D,"A")  #  34.542 10.04978
recweib(G_ha,N_ha,DG,"B") # 14.23261 10.22781
recweib(G_ha,N_ha,DM,"C") # 6.708882 10.44448
recweib(G_ha,N_ha,DGM,"D") # 24.45228 10.10607

lmfor documentation built on April 30, 2022, 1:08 a.m.