| cdfwak | R Documentation |
Distribution function and quantile function of the Wakeby distribution.
cdfwak(x, para = c(0, 1, 0, 0, 0))
quawak(f, para = c(0, 1, 0, 0, 0))
x |
Vector of quantiles. |
f |
Vector of probabilities. |
para |
Numeric vector containing the parameters of the distribution,
in the order
|
The Wakeby distribution with
parameters \xi,
\alpha,
\beta,
\gamma and
\delta
has quantile function
x(F)=\xi+{\alpha\over\beta}\lbrace1-(1-F)^\beta\rbrace-{\gamma\over\delta}\lbrace1-(1-F)^{-\delta}\rbrace.
The parameters are restricted as in Hosking and Wallis (1997, Appendix A.11):
either \beta+\delta>0 or
\beta=\gamma=\delta=0;
if \alpha=0 then \beta=0;
if \gamma=0 then \delta=0;
\gamma\ge0;
\alpha+\gamma\ge0.
The distribution has a lower bound at \xi and,
if \delta<0, an upper bound at
\xi+\alpha/\beta-\gamma/\delta.
The generalized Pareto distribution is the special case
\alpha=0 or \gamma=0.
The exponential distribution is the special case
\beta=\gamma=\delta=0.
The uniform distribution is the special case
\beta=1, \gamma=\delta=0.
cdfwak gives the distribution function;
quawak gives the quantile function.
The functions expect the distribution parameters in a vector,
rather than as separate arguments as in the standard R
distribution functions pnorm, qnorm, etc.
Hosking, J. R. M. and Wallis, J. R. (1997). Regional frequency analysis: an approach based on L-moments, Cambridge University Press, Appendix A.11.
cdfgpa for the generalized Pareto distribution.
cdfexp for the exponential distribution.
# Random sample from the Wakeby distribution
# with parameters xi=0, alpha=30, beta=20, gamma=1, delta=0.3.
quawak(runif(100), c(0,30,20,1,0.3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.