Nothing
get_folded_data <- function(data, folds, index) {
out <- list()
out[["train"]] <- data[folds[[index]]$training_set, , drop = FALSE]
out[["valid"]] <- data[folds[[index]]$validation_set, , drop = FALSE]
out
}
fix_censoring_ind <- function(data, cens) {
if (is.null(cens)) {
return(data)
}
data <- data.table::copy(data)
for (cen in cens) {
data.table::set(data, j = cen, value = ifelse(is.na(data[[cen]]), 0, data[[cen]]))
}
data
}
bound <- function(x, p = 1e-05) {
pmax(pmin(x, 1 - p), p)
}
followed_rule <- function(natural, shifted, A, mtp) {
if (mtp) {
return(rep(TRUE, nrow(natural)))
}
mapply(function(x, y) isTRUE(all.equal(x, y)), as.list(natural[, A]), as.list(shifted[, A]))
}
trim <- function(x, trim) {
pmin(x, quantile(x, trim, na.rm = TRUE))
}
is.lmtp <- function(x) {
class(x) == "lmtp"
}
sw <- function(x) {
suppressWarnings(x)
}
last <- function(x) {
x[length(x)]
}
extract_sl_weights <- function(fit) {
if (inherits(fit, "mlr3superlearner")) {
return(cbind(Risk = fit$risk))
}
fit$coef
}
convert_to_surv <- function(x) {
data.table::fcase(
x == 0, 1,
x == 1, 0
)
}
is_normalized <- function(x, tolerance = .Machine$double.eps^0.5) {
# Check if the mean is approximately 1 within the given tolerance
abs(mean(x) - 1) < tolerance
}
fix_surv_time1 <- function(x) {
to_fix <- x[[1]]$estimate
x[[1]]$estimate <- ife::ife(1 - to_fix@x, 1 - to_fix@eif, to_fix@weights, to_fix@id)
x
}
is_decimal <- function(x) {
test <- floor(x)
!(x == test)
}
`%and%` <- function(o, r) {
i <- vector("logical", length(o))
for (j in 1:length(o)) {
if (is.na(r[j]) & !is.na(o[j])) {
i[j] <- o[j]
} else if (!is.na(r[j]) & is.na(o[j])) {
i[j] <- r[j]
} else {
i[j] <- o[j] & r[j]
}
}
i
}
current_trt <- function(trt, time) {
if (length(trt) > 1) {
return(trt[[time]])
}
trt[[1]]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.