Description Usage Arguments Details Value See Also Examples
Calculates residuals from an 'lmvar' object. This object can be a fit to either a response vector or the logarithm of the response vector.
1 2 |
object |
Object of class 'lmvar' |
log |
Boolean, specifies whether |
... |
For compatibility with |
In case log = FALSE
, the residual of an observation is defined as y - μ, where y is the value of the observation and μ its expected
value.
In case log = TRUE
, the residual of an observation is defined as e^y - μ, where μ is the expected
value of e^y.
A numeric vector with the residual for each observation in object
.
fitted.lmvar
for the expected values in an object of class 'lmvar'.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
# the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)
# Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")
# Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")
# Carry out the fit
fit = lmvar(attenu$accel, X, X_s)
# Calculate the residuals
residuals(fit)
|
[1] 0.1390897203 -0.0521538180 -0.0069438252 -0.0124535393 -0.0570631604
[6] -0.0624822169 -0.0418300439 0.0499220361 0.1309645880 0.2101357245
[11] 0.2243309139 -0.0056444484 0.2453129760 -0.0863896151 0.3310534943
[16] 0.2925377680 0.1093125136 -0.0921384579 -0.0389640840 -0.0359307817
[21] -0.0247355922 -0.0601487071 -0.0082106871 -0.0206917235 0.0514461107
[26] -0.0135770130 -0.0148869129 -0.0179488929 0.0376699777 0.0505746954
[31] 0.0543175259 0.0716413001 -0.0742697469 -0.0817066715 -0.0324492590
[36] 0.0631316846 0.0788079104 -0.0415778437 -0.0605445413 0.1822897776
[41] 0.0116450042 -0.0405807128 0.0015807118 0.0186130892 0.1525811743
[46] -0.0714771059 -0.0803771988 -0.0314512031 0.0350973630 -0.0664831181
[51] -0.0267407500 -0.0173845984 -0.0413832110 -0.0972203990 -0.0783166063
[56] -0.1044132760 -0.1066389930 -0.1030580495 -0.0738295577 -0.0700867271
[61] -0.0572153118 -0.0729635978 -0.1053831837 -0.0763360072 0.1236871165
[66] 0.2045518148 -0.0637554081 -0.0086314481 -0.1045932779 -0.0072075238
[71] 0.0453734197 0.0153734197 -0.0607029207 -0.0997315983 -0.0723125418
[76] -0.0610220701 0.0816479948 0.2620351363 0.1577132121 -0.0752395057
[81] -0.1615609675 -0.0590359918 0.2513957205 0.0619119093 -0.0284095525
[86] 0.0946219000 0.1066866548 0.0993966455 -0.0370534010 -0.0253757877
[91] -0.1019558063 -0.0874386926 -0.0739534939 -0.0078852313 0.0353409481
[96] 0.1124339180 0.3125629652 0.5134662955 0.1135953426 0.6051439088
[101] 0.4366924749 0.3569505692 0.3083700882 0.1997896071 0.4105638902
[106] 0.0614672204 0.0415962676 0.2626286450 0.0227576922 0.0327576922
[111] 0.0854676829 0.1880486264 0.0781776736 0.1184357679 0.0098552869
[116] -0.0788542414 0.2424362304 0.0846300324 -0.0349828261 -0.0298209390
[121] -0.0298209390 -0.0485304672 0.0117276271 -0.0407876366 -0.1009162213
[126] 0.1839871089 -0.0617543343 0.0079242040 -0.0049782013 -0.0817830119
[131] -0.0916211248 0.1470210895 0.1476987028 0.1148277500 0.0324729859
[136] 0.1718601274 0.0428601274 0.1238925048 0.0198925048 -0.0561717875
[141] -0.0139136932 0.0188605899 0.0841834391 0.0395705806 0.0500548544
[146] -0.0358151735 -0.0373956546 -0.0362157505 0.0041075611 -0.0966019671
[151] -0.0983110328 -0.0473744003 -0.0714382301 -0.0531468334 0.1103198153
[156] 0.1261916931 -0.0685178351 0.1439992785 -0.0668064570 -0.0936445700
[161] -0.0774183905 -0.0019664942 -0.0400622390 -0.0655122855 -0.0124834863
[166] 0.0055174387 -0.0543535142 -0.0195135513 -0.0205135513 0.1196807131
[171] -0.0146402861 0.0136178082 0.0138759026 0.0007149404 -0.0495426914
[176] -0.0367036535 -0.0636712761 -0.0134774741 -0.0021870024 -0.0484127193
[181] -0.0624770117 -0.0524441718
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.