Description Usage Arguments Details Value Examples
Returns the columns present in the user-specified model-matrices X_μ and X_σ that were removed by
lmvar
to make the matrices full-rank.
1 2 |
object |
Object of class 'lmvar_no_fit' (hence it can also be of class 'lmvar') |
mu |
Boolean, specifies whether the aliased columns from the model matrix X_μ must be returned |
sigma |
Boolean, specifies whether the aliased columns from the model matrix X_σ must be returned |
... |
Additional arguments, not used in the current implementation |
If mu = TRUE
and sigma = TRUE
, the function returns the aliased columns of both X_μ
and X_σ. The string "_s" is appended to the aliased column names from X_σ if at least one of those
names also appears in X_μ
If mu = TRUE
and sigma = FALSE
, the function returns the aliased columns of X_μ.
If mu = FALSE
and sigma = TRUE
, the function returns the aliased columns of X_σ.
A character vector containing the names of the aliased columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # Create matrix columns
my_intercept = rep(1, 20)
v1 = c(rep(1, 10), rep(0, 10))
v2 = c(rep(0, 10), rep(1, 10))
# Create model matrices
X = cbind(my_intercept, v1, v2)
X_s = X
# Rename the last column of the model matrix 'X_s' to make this example more clear.
colnames(X_s)[3] = "v3"
# Create response vector
y = rnorm(20)
# Perform fit
fit = lmvar(y, X, X_s)
# The column 'my_intercept' is identical to '(Intercept)' added by 'lmvar'
# to the model matrix 'X'. Column 'v2' is equal to '(Intercept)' minus 'v1'.
# The same holds for the model matrix 'X_s'.
alias(fit)
# The aliased columns are left out if you extract the coefficients from a summary
coef(summary(fit))
# Only return the aliased colums in the model matrix for the expectation values
alias(fit, sigma = FALSE)
# Only return the aliased colums in the model matrix for the standard deviations
alias(fit, mu = FALSE)
# It also works on an object of class 'lmvar_no_fit'
no_fit = lmvar_no_fit(y, X, X_s)
alias(no_fit, mu = FALSE)
|
[1] "my_intercept" "v2" "my_intercept_s" "v3_s"
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.04298943 0.2337530 0.18390961 0.8540844
v1 0.03317664 0.3499042 0.09481635 0.9244607
(Intercept_s) -0.30219766 0.2236068 -1.35146901 0.1765452
v1_s 0.10783808 0.3162278 0.34101396 0.7330931
[1] "my_intercept" "v2"
[1] "my_intercept" "v3"
[1] "my_intercept" "v3"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.