Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----ch1----------------------------------------------------------------------
library(loadshaper)
## ----flow, echo=FALSE, fig.cap="Load Shape Scaling Process \\label{fig:flow}", out.width = '80%'----
knitr::include_graphics("flow.png")
## ----flow2, echo=FALSE, fig.cap="Load Shape Scaling Process Using Logistic Method \\label{fig:flow2}", out.width = '100%'----
knitr::include_graphics("flow2.png")
## -----------------------------------------------------------------------------
library(loadshaper)
# load ERCOT COAST load for the year 2019
loads <- ercot[ercot$Year == 2019, ]$COAST
# simple line plot
plot(loads, type = "l", col = "salmon", ylab = "Load (MW)")
grid()
## -----------------------------------------------------------------------------
lin_loadshape <- lslin(loads, target_lf = 0.5,
target_max = 5000)
print(class(lin_loadshape))
## -----------------------------------------------------------------------------
summary(lin_loadshape)
## -----------------------------------------------------------------------------
# ordered per unit load
x_opu <- sort(loads / max(loads), decreasing = TRUE)
n <- length(x_opu)
# minimum possible target load factor
min_lf <- (sum(x_opu) - mean(c(1:n) * x_opu))/(n-1)
print(round(min_lf, 3))
## -----------------------------------------------------------------------------
# setting target load factor to theoretical minimum
summary(lslin(loads, target_lf = min_lf))
# setting target load factor less than theoretical minimum
summary(lslin(loads, target_lf = 0.2))
## -----------------------------------------------------------------------------
# scenario 1
summary(lslin(loads, target_lf = 0.65))
## -----------------------------------------------------------------------------
# scenario 2
summary(lslin(loads, target_lf = 0.95))
## -----------------------------------------------------------------------------
log_loadshape <- lslog(loads, target_lf = 0.5, target_max = 100)
print(class(log_loadshape))
## -----------------------------------------------------------------------------
summary(log_loadshape)
## -----------------------------------------------------------------------------
summary(lslog(loads, target_lf = 0.9))
## -----------------------------------------------------------------------------
# scatter plot, per unit load
plot(lin_loadshape, scatter = TRUE)
## -----------------------------------------------------------------------------
# scatter plot, actual load
plot(lin_loadshape, scatter = TRUE, case = 3)
## -----------------------------------------------------------------------------
# per unit load duration curve
plot(log_loadshape, case = 1)
## -----------------------------------------------------------------------------
# per unit load d
plot(log_loadshape, case = 2)
## -----------------------------------------------------------------------------
# linear method, acf
print(lscore(lin_loadshape, type = "acf"))
## -----------------------------------------------------------------------------
# logistic method, acf
print(lscore(log_loadshape, type = "acf"))
## -----------------------------------------------------------------------------
# linear method, pacf
print(lscore(lin_loadshape, type = "pacf"))
## -----------------------------------------------------------------------------
# logistic method, pacf
print(lscore(log_loadshape, type = "pacf"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.