PRDenEstC | R Documentation |
Parzen–Rosenblat univariate density estimator.
PRDenEstC(x, xeval, bw, kernel, weig = rep(1, length(x)))
x |
vector with data points. |
xeval |
Vector of evaluation points. |
bw |
Smoothing parameter, bandwidth. |
kernel |
Kernel used to perform the estimation, see |
weig |
Vector of weights for observations. |
Simple Parzen–Rosenblat univariate density estimation, computed using definition.
Returns an (x,den)
data frame.
x |
Evaluation points. |
den |
Density at each |
Jorge Luis Ojeda Cabrera.
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
Wand, M.~P. and Jones, M.~C. Kernel smoothing\/. Chapman and Hall Ltd., London (1995).
density
, that uses FT to compute a kernel density
estimator, bkde
from package KernSmooth for a
binned version, and bw.nrd0
, dpik
, denCVBwSelC
for bandwidth selection.
N <- 100 x <- runif(N) xeval <- 0:10/10 b0.125 <- PRDenEstC(x, xeval, 0.125, EpaK) b0.05 <- PRDenEstC(x, xeval, 0.05, EpaK) cbind(x = xeval, fx = 1, b0.125 = b0.125$den, b0.05 = b0.05$den)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.