simpleSmoothers | R Documentation |
Computes simple kernel smoothing
simpleSmootherC(x, y, xeval, bw, kernel, weig = rep(1, length(y))) simpleSqSmootherC(x, y, xeval, bw, kernel)
x |
x covariate data values. |
y |
y response data values. |
xeval |
Vector with evaluation points. |
bw |
Smoothing parameter, bandwidth. |
kernel |
Kernel used to perform the estimation, see |
weig |
weights if they are required. |
Computes simple smoothing, that is to say: it averages y
values times kernel evaluated on x
values. simpleSqSmootherC
does the average with the square of such values.
Both functions returns a data.frame
with
x |
x evaluation points. |
reg |
the smoothed values at |
...
Jorge Luis Ojeda Cabrera.
PRDenEstC
, Kernel characteristics
size <- 1000 x <- runif(100) bw <- 0.125 kernel <- EpaK xeval <- 1:9/10 y <- rep(1,100) ## x kern. aver. should give density f(x) prDen <- PRDenEstC(x,xeval,bw,kernel)$den ssDen <- simpleSmootherC(x,y,xeval,bw,kernel)$reg all(abs(prDen-ssDen)<1e-15) ## x kern. aver. should be f(x)*R2(K) aprox. s2Den <- simpleSqSmootherC(x,y,xeval,bw,kernel)$reg summary( abs(prDen*RK(kernel)-s2Den) ) summary( abs(1*RK(kernel)-s2Den) ) ## x kern. aver. should be f(x)*R2(K) aprox. for(n in c(1000,1e4,1e5)) { s2D <- simpleSqSmootherC(runif(n),rep(1,n),xeval,bw,kernel)$reg cat("\n",n,"\n") print( summary( abs(1*RK(kernel)-s2D) ) ) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.