regCVBwSelC | R Documentation |
Implements Cross validation bandwidth selector for the regression function.
regCVBwSelC(x, y, deg, kernel=gaussK,weig=rep(1,length(y)), interval=.lokestOptInt)
x |
x covariate values. |
y |
y response values. |
deg |
degree of the local polynomial. |
kernel |
Kernel used to perform the estimation, see |
weig |
Vector of weights for observations. |
interval |
An interval where to look for the bandwidth. |
Computes the weighted ASE for every bandwidth returning the minimum.
The function is implemented by means of a C function that computes for a
single bandwidth the ASE, and a call to optimise
on a given interval.
A numeric value.
Jorge Luis Ojeda Cabrera.
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
H\"ardle W.(1990) Smoothing techniques. Springer Series in Statistics, New York (1991).
Wand, M.~P. and Jones, M.~C. Kernel smoothing\/. Chapman and Hall Ltd., London (1995).
thumbBw
, pluginBw
.
size <- 200 sigma <- 0.25 deg <- 1 kernel <- EpaK xeval <- 0:100/100 regFun <- function(x) x^3 x <- runif(size) y <- regFun(x) + rnorm(x, sd = sigma) d <- data.frame(x, y) cvBwSel <- regCVBwSelC(d$x,d$y, deg, kernel, interval = c(0, 0.25)) thBwSel <- thumbBw(d$x, d$y, deg, kernel) piBwSel <- pluginBw(d$x, d$y, deg, kernel) est <- function(bw, dat, x) return(locPolSmootherC(dat$x,dat$y, x, bw, deg, kernel)$beta0) ise <- function(val, est) return(sum((val - est)^2 * xeval[[2]])) plot(d$x, d$y) trueVal <- regFun(xeval) lines(xeval, trueVal, col = "red") xevalRes <- est(cvBwSel, d, xeval) cvIse <- ise(trueVal, xevalRes) lines(xeval, xevalRes, col = "blue") xevalRes <- est(thBwSel, d, xeval) thIse <- ise(trueVal, xevalRes) xevalRes <- est(piBwSel, d, xeval) piIse <- ise(trueVal, xevalRes) lines(xeval, xevalRes, col = "blue", lty = "dashed") res <- rbind( bw = c(cvBwSel, thBwSel, piBwSel), ise = c(cvIse, thIse, piIse) ) colnames(res) <- c("CV", "th", "PI") res
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.