View source: R/plot.logistf.profile.r
plot.logistf.profile | R Documentation |
plot
Method for logistf
Likelihood ProfilesProvides the plot method for objects created by profile.logistf
or CLIP.profile
## S3 method for class 'logistf.profile'
plot(
x,
type = "profile",
max1 = TRUE,
colmain = "black",
colimp = "gray",
plotmain = T,
ylim = NULL,
...
)
x |
A |
type |
Type of plot: one of c("profile", "cdf", "density") |
max1 |
If |
colmain |
Color for main profile line |
colimp |
color for completed-data profile lines (for |
plotmain |
if |
ylim |
Limits for the y-axis |
... |
Further arguments to be passed to |
The plot method provides three types of plots (profile, CDF, and density representation of a profile likelihood). For objects generated by CLIP.profile, it also allows to show the completed-data profiles along with the pooled profile.
The function is called for its side effects
Georg Heinze und Meinhard Ploner
Heinze G, Ploner M, Beyea J (2013). Confidence intervals after multiple imputation: combining profile likelihood information from logistic regressions. Statistics in Medicine, to appear.
data(sex2)
fit<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sex2)
plot(profile(fit,variable="dia"))
plot(profile(fit,variable="dia"), "cdf")
plot(profile(fit,variable="dia"), "density")
#generate data set with NAs
freq=c(5,2,2,7,5,4)
y<-c(rep(1,freq[1]+freq[2]), rep(0,freq[3]+freq[4]), rep(1,freq[5]), rep(0,freq[6]))
x<-c(rep(1,freq[1]), rep(0,freq[2]), rep(1,freq[3]), rep(0,freq[4]), rep(NA,freq[5]),
rep(NA,freq[6]))
toy<-data.frame(x=x,y=y)
# impute data set 5 times
set.seed(169)
toymi<-list(0)
for(i in 1:5){
toymi[[i]]<-toy
y1<-toymi[[i]]$y==1 & is.na(toymi[[i]]$x)
y0<-toymi[[i]]$y==0 & is.na(toymi[[i]]$x)
xnew1<-rbinom(sum(y1),1,freq[1]/(freq[1]+freq[2]))
xnew0<-rbinom(sum(y0),1,freq[3]/(freq[3]+freq[4]))
toymi[[i]]$x[y1==TRUE]<-xnew1
toymi[[i]]$x[y0==TRUE]<-xnew0
}
# logistf analyses of each imputed data set
fit.list<-lapply(1:5, function(X) logistf(data=toymi[[X]], y~x, pl=TRUE))
# CLIP profile
xprof<-CLIP.profile(obj=fit.list, variable="x", data=toymi, keep=TRUE)
plot(xprof)
#plot as CDF
plot(xprof, "cdf")
#plot as density
plot(xprof, "density")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.