twCoefLogitnormMLE | R Documentation |
Estimating coefficients of logitnormal distribution from mode and upper quantile
twCoefLogitnormMLE(mle, quant, perc = 0.999)
mle |
numeric vector: the mode of the density function |
quant |
numeric vector: the upper quantile value |
perc |
numeric vector: the probability for which the quantile was specified |
numeric matrix with columns c("mu","sigma")
rows correspond to rows in mle
, quant
, and perc
Thomas Wutzler
logitnorm
# estimate the parameters, with mode 0.7 and upper quantile 0.9
mode = 0.7; upper = 0.9
(theta <- twCoefLogitnormMLE(mode,upper))
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(mode,upper),col = "gray"); abline(h = c(0.999),col = "gray")
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(mode,upper),col = "gray")
# vectorized
(theta <- twCoefLogitnormMLE(mle = seq(0.4,0.8,by = 0.1),quant = upper))
# flat
(theta <- twCoefLogitnormMLEFlat(mode))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.