twSigmaLogitnorm | R Documentation |
Estimating coefficients of logitnormal distribution from mode and given mu
twSigmaLogitnorm(mle, mu = 0)
mle |
numeric vector: the mode of the density function |
mu |
for mu = 0 the distribution will be the flattest case (maybe bimodal) |
For a mostly flat unimodal distribution use twCoefLogitnormMLE(mle,0)
numeric matrix with columns c("mu","sigma")
rows correspond to rows in mle and mu
Thomas Wutzler
logitnorm
mle <- 0.8
(theta <- twSigmaLogitnorm(mle))
#
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(mle),col = "gray")
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(mle),col = "gray")
# vectorized
(theta <- twSigmaLogitnorm(mle = seq(0.401,0.8,by = 0.1)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.