twSigmaLogitnorm: twSigmaLogitnorm

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/logitnorm.R

Description

Estimating coefficients of logitnormal distribution from mode and given mu

Usage

1

Arguments

mle

numeric vector: the mode of the density function

mu

for mu=0 the distribution will be the flattest case (maybe bimodal)

Details

For a mostly flat unimodal distribution use twCoefLogitnormMLE(mle,0)

Value

numeric matrix with columns c("mu","sigma")

rows correspond to rows in mle and mu

Author(s)

Thomas Wutzler

See Also

logitnorm

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    mle <- 0.8


    (theta <- twSigmaLogitnorm(mle))


    #


x <- seq(0,1,length.out=41)[-c(1,41)]	# plotting grid


px <- plogitnorm(x,mu=theta[1],sigma=theta[2])	#percentiles function


plot(px~x); abline(v=c(mle),col="gray")


dx <- dlogitnorm(x,mu=theta[1],sigma=theta[2])	#density function


plot(dx~x); abline(v=c(mle),col="gray")


# vectorized


(theta <- twSigmaLogitnorm(mle=seq(0.401,0.8,by=0.1)))

logitnorm documentation built on Dec. 9, 2017, 1:05 a.m.