twSigmaLogitnorm

Description

Estimating coefficients of logitnormal distribution from mode and given mu

Usage

1
twSigmaLogitnorm(mle, mu = 0)

Arguments

mle

numeric vector: the mode of the density function

mu

for mu=0 the distribution will be the flattest case (maybe bimodal)

Details

For a mostly flat unimodal distribution use twCoefLogitnormMLE(mle,0)

Value

numeric matrix with columns c("mu","sigma") rows correspond to rows in mle and mu

Author(s)

Thomas Wutzler

See Also

logitnorm

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
    mle <- 0.8
    (theta <- twSigmaLogitnorm(mle))
    #
x <- seq(0,1,length.out=41)[-c(1,41)]	# plotting grid
px <- plogitnorm(x,mu=theta[1],sigma=theta[2])	#percentiles function
plot(px~x); abline(v=c(mle),col="gray")
dx <- dlogitnorm(x,mu=theta[1],sigma=theta[2])	#density function
plot(dx~x); abline(v=c(mle),col="gray")
# vectorized
(theta <- twSigmaLogitnorm(mle=seq(0.401,0.8,by=0.1)))