Overview of loose.rock

if (!exists('dont_run_setup')) {
  dont_run_setup <- FALSE
} 
if (!dont_run_setup) {
  knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>"
  )
}
#
library(loose.rock)
loose.rock::base.dir(file.path(tempdir(), 'run-cache'))

Collection of function to improve workflow in survival analysis and data science. Among the many features, the generation of balanced datasets, retrieval of protein coding genes from two public databases (live) and generation of random matrix based on covariance matrix.

The work has been mainly supported by two grants: FCT SFRH/BD/97415/2013 and the EU Commission under SOUND project with contract number 633974.

Install

The only pre-requirement is to install biomaRt bioconductor package as it cannot be installed automatically via CRAN.

All other dependencies should be installed when running the install command.

if (!require("BiocManager"))
  install.packages("BiocManager")
BiocManager::install("loose.rock")

# use the package
library(loose.rock)

Overview

Libraries required for this vignette

library(dplyr)

Get a current list of protein coding genes

Showing only a random sample of 15

coding.genes() %>%
  dplyr::arrange(external_gene_name) %>% {
   dplyr::slice(., sample(seq(nrow(.)), 15)) 
  } %>%
  knitr::kable()

Balanced test/train dataset

This is specially relevant in survival or binary output with few cases of one category that need to be well distributed among test/train data sets or in cross-validation folds.

Example below sets aside 90% of the data to the training set. As samples are already divided in two sets (set1 and set2), it performs the 90% separation for each and then joins (with option join.all = T) the result.

set1 <- c(rep(TRUE, 8), FALSE, rep(TRUE, 9), FALSE, TRUE)
set2 <- !set1
cat(
  'Set1', '\n', set1, '\n\n',
  'Set2', '\n', set2, '\n\n',
  'Training / Test set using logical indices', '\n\n'
)
set.seed(1985)
balanced.train.and.test(set1, set2, train.perc = .9)
#
set1 <- which(set1)
set2 <- which(set2)
cat(
  '##### Same sets but using numeric indices', '\n\n', 
  'Set1', '\n', set1, '\n\n', 
  'Set2', '\n', set2, '\n\n', 
  'Training / Test set using numeric indices', '\n')
set.seed(1985)
balanced.train.and.test(set1, set2, train.perc = .9)
#

Generate synthetic matrix with covariance

xdata1 <- gen.synth.xdata(10, 5, .2)
xdata2 <- gen.synth.xdata(10, 5, .75)
#
cat('Using .2^|i-j| to generate co-variance matrix\n\n')
cat('X generated\n\n')
data.frame(xdata1)
cat('cov(X)\n\n')
data.frame(cov(xdata1))
draw.cov.matrix(xdata1) + ggplot2::ggtitle('X1 Covariance Matrix')
#
cat('Using .75^|i-j| to generate co-variance matrix (plotting correlation)\n\n')
cat('X generated\n\n')
data.frame(xdata2)
cat('cov(X)\n\n')
data.frame(cor(xdata2, method = 'pearson'))
draw.cov.matrix(xdata2, fun = cor, method = 'pearson') + 
  ggplot2::ggtitle('X2 Pearson Correlation Matrix')

Save in cache

Uses a cache to save and retrieve results. The cache is automatically created with the arguments and source code for function, so that if any of those changes, the cache is regenerated.

Caution: Files are not deleted so the cache directory can become rather big.

Set a temporary directory to save all caches (optional)

base.dir(file.path(tempdir(), 'run-cache'))

Run sum function twice

a <- run.cache(sum, 1, 2)
b <- run.cache(sum, 1, 2)
all(a == b)

Run rnorm function with an explicit seed (otherwise it would return the same random number)

a <- run.cache(rnorm, 5, seed = 1985)
b <- run.cache(rnorm, 5, seed = 2000)
all(a == b)

Proper

One of such is a proper function that capitalizes a string.

x <- "OnE oF sUcH iS a proPer function that capitalizes a string."
proper(x)

Custom colors and symbols

my.colors() and my.symbols() can be used to improve plot readability.

xdata <- -10:10
plot(
  xdata, 1/10 * xdata * xdata + 1, type="l", 
  pch = my.symbols(1), col = my.colors(1), cex = .9,
  xlab = '', ylab = '', ylim = c(0, 20)
)
grid(NULL, NULL, lwd = 2) # grid only in y-direction
for (ix in 2:22) {
  points(
    xdata, 1/10 * xdata * xdata + ix, pch = my.symbols(ix), 
    col = my.colors(ix), cex = .9
  )
}


Try the loose.rock package in your browser

Any scripts or data that you put into this service are public.

loose.rock documentation built on April 30, 2021, 1:06 a.m.