plotCIN2Incidence: Calculates and plots the CIN2 incidence.

View source: R/plotCIN2Incidence.R

plotCIN2IncidenceR Documentation

Calculates and plots the CIN2 incidence.

Description

Calculates and plots the CIN2 incidence for one or several prevention strategies.

Usage

  plotCIN2Incidence(..., current=NULL, labels=NULL)

Arguments

...

one or several microsimulated cohort corresponding to one or several microsimulated cohorts.

current

real CIN 2 incidence in the population of interest.

labels

labels to be used in the plot.

Value

Returns a list with CIN 2 incidence for each age group.

Author(s)

David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)

References

Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.

Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.

See Also

mSimCC-package, microsim, costs, le, bCohort, plotCIN1Incidence, plotCIN3Incidence, plotIncidence, plotMortality, plotPrevalence, qalys, yls

Examples

data(probs)
nsim       <- 3
p.men      <- 0
size       <- 20
min.age    <- 10
max.age    <- 84

#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), 
               prob_sympt=c(0.11, 0.23, 0.66, 0.9), 
                size, p.men, min.age, max.age, 
                utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
                costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 
                                 34016.6, 0, 0, 0),
                costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
                costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, 
                treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
                nCores=1) ### individual level
hn_c <- bCohort(hn)
plotCIN2Incidence(hn_c) ### Aggregated level

mSimCC documentation built on Aug. 22, 2023, 5:07 p.m.