qalys | R Documentation |
Aggregates data from a microsimulated cohort.
qalys(scenario, disc=FALSE)
scenario |
microsimulated cohort. |
disc |
discount rate to be applied. Defaults to |
Global and per-person QALYs of the considered prevention strategy.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
plotCIN1Incidence
, plotCIN2Incidence
, plotCIN3Incidence
,
plotIncidence
, plotMortality
, plotPrevalence
,
bCohort
, yls
data(probs)
nsim <- 3
p.men <- 0
size <- 20
min.age <- 10
max.age <- 84
#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8),
prob_sympt=c(0.11, 0.23, 0.66, 0.9),
size, p.men, min.age, max.age,
utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4,
34016.6, 0, 0, 0),
costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3,
treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
nCores=1) ### individual level
qalys(hn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.