copula2d | R Documentation |
Parametric bivariate copulas, densities, and random number generators
d2dcop.asym(u, v, lambda, copula = "clayton", ...)
p2dcop.asym(u, v, lambda, copula = "clayton", ...)
r2dcop.asym(n, lambda, copula = "clayton", ...)
dcopula(u, v, copula, ...)
pcopula(u, v, copula, ...)
rcopula(n, copula, ...)
u , v |
vectors of same length at which the copula and its density is evaluated |
lambda |
a vector of three mixing proportions which sum to one |
copula |
the name of a copula to be called or a base copula for construncting asymmetric copula(see Details) |
... |
the parameter(s) of |
n |
number of random vectors to be generated |
The names of available copulas are 'amh'
(Ali-Mikhai-Haq), 'bern'
(Bernstein polynomial model),
'clayton'
(Clayton), 'exponential'
(Exponential), 'fgm'
(Farlie–Gumbel–Morgenstern),
'frank'
(Frank), 'gauss'
(Gaussian), 'gumbel'
(Gumbel),
'indep'
(Independence), 'joe'
(Joe), 'nakagami'
(Nakagami-m), 'plackett'
(Plackett),
't'
(Student's t).
d2dcop.asym
, etc, calculate the constructive assymmetric copula of Wu (2014)
using base copula
C_{\theta}
with mixing proportions p=(\lambda_1,\lambda_2,\lambda_3)
and
parameter values \theta=(\theta_1,\theta_2,\theta_3)
:
\lambda_0C_{\theta_0}(u,v)+\lambda_1[v-C_{\theta_1}(1-u,v)]+\lambda_2[u-C_{\theta_2}(u,1-v)]
.
If copula='t'
or 'nakagami'
, df
or m
must be also given.
a vector of copula ot its density values evaluated at (u,v)
or an n x 2
matrix of the generated observations
Nelsen, R. B. (1999). An Introduction to Copulas. Springer Series in Statistics. New York: Springer. Wu, S. (2014). Construction of asymmetric copulas and its application in two-dimensional reliability modelling. European Journal of Operational Research 238 (2), 476–485.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.