| copula2d | R Documentation |
Parametric bivariate copulas, densities, and random number generators
d2dcop.asym(u, v, lambda, copula = "clayton", ...)
p2dcop.asym(u, v, lambda, copula = "clayton", ...)
r2dcop.asym(n, lambda, copula = "clayton", ...)
dcopula(u, v, copula, ...)
pcopula(u, v, copula, ...)
rcopula(n, copula, ...)
u, v |
vectors of same length at which the copula and its density is evaluated |
lambda |
a vector of three mixing proportions which sum to one |
copula |
the name of a copula to be called or a base copula for construncting asymmetric copula(see Details) |
... |
the parameter(s) of |
n |
number of random vectors to be generated |
The names of available copulas are 'amh' (Ali-Mikhai-Haq), 'bern' (Bernstein polynomial model),
'clayton'(Clayton), 'exponential' (Exponential), 'fgm'(Farlie–Gumbel–Morgenstern),
'frank' (Frank), 'gauss' (Gaussian), 'gumbel' (Gumbel),
'indep' (Independence), 'joe' (Joe), 'nakagami' (Nakagami-m), 'plackett' (Plackett),
't' (Student's t).
d2dcop.asym, etc, calculate the constructive assymmetric copula of Wu (2014)
using base copula C_{\theta} with mixing proportions p=(\lambda_1,\lambda_2,\lambda_3) and
parameter values \theta=(\theta_1,\theta_2,\theta_3):
\lambda_0C_{\theta_0}(u,v)+\lambda_1[v-C_{\theta_1}(1-u,v)]+\lambda_2[u-C_{\theta_2}(u,1-v)].
If copula='t' or 'nakagami', df or m must be also given.
a vector of copula ot its density values evaluated at (u,v)
or an n x 2 matrix of the generated observations
Nelsen, R. B. (1999). An Introduction to Copulas. Springer Series in Statistics. New York: Springer. Wu, S. (2014). Construction of asymmetric copulas and its application in two-dimensional reliability modelling. European Journal of Operational Research 238 (2), 476–485.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.