mable.hellcorr | R Documentation |
Estimate of Hellinger Correlation between two random variables and Bootstrap
mable.hellcorr(
x,
unif.mar = FALSE,
pseudo.obs = c("empirical", "mable"),
M0 = c(1, 1),
M = c(30, 30),
search = TRUE,
mar.deg = TRUE,
high.dim = FALSE,
interval = cbind(0:1, 0:1),
B = 200L,
conf.level = 0.95,
integral = TRUE,
controls = mable.ctrl(sig.level = 0.05),
progress = FALSE
)
hellcorr(
x,
unif.mar = FALSE,
pseudo.obs = c("empirical", "mable"),
M0 = c(1, 1),
M = c(30, 30),
search = TRUE,
mar.deg = TRUE,
high.dim = FALSE,
interval = cbind(0:1, 0:1),
B = 200L,
conf.level = 0.95,
integral = TRUE,
controls = mable.ctrl(sig.level = 0.05),
progress = FALSE
)
x |
an |
unif.mar |
logical, whether all the marginals distributions are uniform or not.
If not the pseudo observations will be created using |
pseudo.obs |
|
M0 |
a nonnegative integer or a vector of |
M |
a positive integer or a vector of |
search |
logical, whether to search optimal degrees between |
mar.deg |
logical, if TRUE (default), the optimal degrees are selected based on marginal data, otherwise, the optimal degrees are chosen by the method of change-point. See details. |
high.dim |
logical, data are high dimensional/large sample or not if TRUE, run a slower version procedure which requires less memory |
interval |
a 2 by 2 matrix, columns are the marginal supports |
B |
the number of bootstrap samples and number of Monte Carlo runs for
estimating |
conf.level |
confidence level |
integral |
logical, using "integrate()" or not (Riemann sum) |
controls |
Object of class |
progress |
if TRUE a text progressbar is displayed |
This function calls mable.copula()
for estimation of the copula density.
eta
Hellinger correlation
CI.eta
Bootstrap confidence interval for
Hellinger correlation if B
>0.
Zhong Guan <zguan@iu.edu>
Guan, Z., Nonparametric Maximum Likelihood Estimation of Copula
mable
, mable.mvar
, mable.copula
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.