Nothing
#' Mandatory Data for the Example 'Points'
#'
#' @name inp_exPoints
#' @aliases inp_exPoints
#' @docType data
#'
#' @description Data needed to demonstrate the working of functions with a point mode. Measured monthly time series
#' of three basic climate variables retrieved from the CarpatClim database (Spinoni et al. 2015), at a grid cell
#' near Szeged, Hungary (46.3° N, 20.2° E), for the period 1981-2010; supplemented with the associated
#' geographical data. Monthly mean relative sunshine duration has been obtained as a ratio of monthly total of
#' sunshine duration and maximum potential number of sunshine hours under clear-sky conditions. Daylength
#' (accumulated hours of daylight) was calculated via Eq 1.6.11 in Duffie and Beckman (1991), according to the
#' SPLASH radiation algorithm (see \code{\link{cliAvgDlySolIrrPoints}}).
#'
#' @format A list with three data frames and three numeric scalars.
#'
#' Data frames contain one-year monthly time series for the period 1981-2010, for the following climate variables:
#' \itemize{
#' \item{\code{temp}: mean air temperature (in °C)}
#' \item{\code{prec}: precipitation sum (in mm)}
#' \item{\code{bsdf}: mean relative sunshine duration (dimensionless)}
#' }
#'
#' The following geographical parameters can be extracted from the numeric scalars:
#' \itemize{
#' \item{\code{lat}: latitude coordinate (in decimal degrees)}
#' \item{\code{lon}: longitude coordinate (in decimal degrees)}
#' \item{\code{elv}: elevation (in meters above sea level)}
#' }
#'
#' @references
#'
#' \emph{Duffie JA, Beckman WA (1991) Solar Engineering of Thermal Processes. Second Edition. Wiley-Interscience,
#' New York, NY}
#'
#' \emph{Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D,
#' Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradnícek P, Kilar P, Limanowka D,
#' Pyrc R, Cheval S, Birsan M-V, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P,
#' Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J
#' (2015) Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10
#' variables. Int J Climatol 35(7):1322-1341. \doi{10.1002/joc.4059}}
#'
#' @examples
#' data(inp_exPoints)
#' str(inp_exPoints)
#'
NULL
#' Mandatory Data for the Example 'Single-Year Grid'
#' @name inp_exSglyGrid
#' @aliases inp_exSglyGrid
#' @docType data
#'
#' @description Data needed to demonstrate the working of functions with a grid mode. Measured monthly time series of
#' the year 2010 for three basic climate variables retrieved from the the CarpatClim database
#' (Spinoni et al. 2015), for Csongrád-Csanád County; supplemented with a digital elevation model. Monthly mean
#' relative sunshine duration has been obtained as a ratio of monthly total of sunshine duration and maximum
#' potential number of sunshine hours under clear-sky conditions. Daylength (accumulated hours of daylight) was
#' calculated via Eq 1.6.11 in Duffie and Beckman (1991), according to the SPLASH radiation model
#' (see \code{\link{cliAvgDlySolIrrPoints}}). For all grids, the WGS84 (EPSG:4326) coordinate system was used
#' with a horizontal resolution of 0.1°.
#'
#' @format A list with three RasterBricks and one RasterLayer.
#'
#' Each of the RasterBricks contains a one-year monthly time series for the year 2010,
#' for the following climate variables:
#' \itemize{
#' \item{\code{temp}: mean air temperature (in °C)}
#' \item{\code{prec}: precipitation sum (in mm)}
#' \item{\code{bsdf}: mean relative sunshine duration (dimensionless)}
#' }
#'
#' Elevation data can be extracted from a single RasterLayer: \code{elv}.
#'
#' @references
#'
#' \emph{Duffie JA, Beckman WA (1991) Solar Engineering of Thermal Processes. Second Edition. Wiley-Interscience,
#' New York, NY}
#'
#' \emph{Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D,
#' Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradnícek P, Kilar P, Limanowka D,
#' Pyrc R, Cheval S, Birsan M-V, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P,
#' Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J
#' (2015) Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10
#' variables. Int J Climatol 35(7):1322-1341. \doi{10.1002/joc.4059}}
#'
#' @examples
#' data(inp_exSglyGrid)
#' str(inp_exSglyGrid)
#'
#' @import raster
#'
NULL
#' Mandatory Data for the Example 'Climate Normal Grid'
#' @name inp_exClnrGrid
#' @aliases inp_exClnrGrid
#' @docType data
#'
#' @description Data needed to demonstrate the working of functions with a grid mode. Average monthly time series of
#' three measured basic climate variables for the normal period 1981-2010 retrieved from the the CarpatClim
#' database (Spinoni et al. 2015), for Csongrád-Csanád County; supplemented with a digital elevation model.
#' Monthly mean relative sunshine duration has been obtained as a ratio of monthly total of sunshine duration and
#' maximum potential number of sunshine hours under clear-sky conditions. Daylength (accumulated hours of
#' daylight) was calculated via Eq 1.6.11 in Duffie and Beckman (1991), according to the SPLASH radiation model
#' (see \code{\link{cliAvgDlySolIrrPoints}}). For all grids, the WGS84 (EPSG:4326) coordinate system was used
#' with a horizontal resolution of 0.1°.
#'
#' @format A list with three RasterBricks and one RasterLayer.
#'
#' Each of the RasterBricks contains a one-year average monthly time series for the normal period 1981-2010,
#' for the following climate variables:
#' \itemize{
#' \item{\code{temp}: mean air temperature (in °C)}
#' \item{\code{prec}: precipitation sum (in mm)}
#' \item{\code{bsdf}: mean relative sunshine duration (dimensionless)}
#' }
#'
#' Elevation data can be extracted from a single RasterLayer: \code{elv}.
#'
#' @references
#'
#' \emph{Duffie JA, Beckman WA (1991) Solar Engineering of Thermal Processes. Second Edition. Wiley-Interscience,
#' New York, NY}
#'
#' \emph{Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D,
#' Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradnícek P, Kilar P, Limanowka D,
#' Pyrc R, Cheval S, Birsan M-V, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P,
#' Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J
#' (2015) Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10
#' variables. Int J Climatol 35(7):1322-1341. \doi{10.1002/joc.4059}}
#'
#' @examples
#' data(inp_exClnrGrid)
#' str(inp_exClnrGrid)
#'
#' @import raster
#'
NULL
#' Supplemental Data Frame for Decoding Outputs of Vegetation Classifiers
#' @name vegClsNumCodes
#' @aliases vegClsNumCodes
#' @docType data
#'
#' @description The key to the classes used by climate-based vegetation classifiers implemented here. Currently, three
#' bioclimatic vegetation classification approaches are implemented:
#' \itemize{
#' \item{\code{HLZ}: a version with no altitudinal belts of the Holdridge life zone (HLZ) system (Holdridge
#' 1947, 1967), in accordance with works of Szelepcsényi et al. (2014, 2018)}
#' \item{\code{KGC}: the Köppen-Geiger classification (KGC) system (Köppen 1936) with some modifications
#' suggested by Peel et al. (2007)}
#' \item{\code{BIOME}: the initial version of the BIOME model developed by Prentice et al. (1992)}
#' }
#'
#' @format A data frame that allows for interpreting the return objects provided by climate-based vegetation
#' classifiers implemented here. Two columns belong to each vegetation classification approach. Columns whose
#' names begin with the string \code{'Name.'} contain the full names of the vegetation classes. While columns
#' whose names begin with the string \code{'Code.'} summarize the abbreviations used by functions with a point
#' mode. Row numbers of the data frame have a special role because they are the same as the numbers returned by
#' the functions with a grid mode.
#'
#' @references
#'
#' \emph{Holdridge LR (1947) Determination of World Plant Formations From Simple Climatic Data. Science
#' 105(2727):367–368. \doi{10.1126/science.105.2727.367}}
#'
#' \emph{Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica}
#'
#' \cite{Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der
#' Klimatologie. Verlag von Gebrüder Borntraeger, Berlin, Germany, pp 1–44}
#'
#' \cite{Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification.
#' Hydrol Earth Syst Sci 11(5):1633–1644. \doi{10.5194/hess-11-1633-2007}}
#'
#' \emph{Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on
#' plant physiology and dominance, soil properties and climate. J Biogeogr 19(2):117–134. \doi{10.2307/2845499}}
#'
#' \emph{Szelepcsényi Z, Breuer H, Sümegi P (2014) The climate of Carpathian Region in the 20th century based on the
#' original and modified Holdridge life zone system. Cent Eur J Geosci 6(3):293–307.
#' \doi{10.2478/s13533-012-0189-5}}
#'
#' \emph{Szelepcsényi Z, Breuer H, Kis A, Pongrácz R, Sümegi P (2018) Assessment of projected climate change in the
#' Carpathian Region using the Holdridge life zone system. Theor Appl Climatol 131(1–2):593–610.
#' \doi{10.1007/s00704-016-1987-3}}
#'
#' @examples
#' data(vegClsNumCodes)
#' str(vegClsNumCodes)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.