inst/doc/mactivation_examples_01.R

### R code from vignette source 'mactivation_examples_01.Snw'

###################################################
### code chunk number 1: mactivation_examples_01.Snw:107-110
###################################################
options(width=49)
options(prompt=" ")
options(continue="   ")


###################################################
### code chunk number 2: a1 (eval = FALSE)
###################################################
## 
## library(mactivate)
## 
## set.seed(777)
## 
## 
## f_dummy <- function(x) {
##     u.x <- sort(unique(x))
##     d <- length(u.x)
##     mx.out <- matrix(0, length(x), d)
##     for (i in 1:d) {
##         mx.out[, i] <- as.integer(u.x[i] == x)
##     }
##     colnames(mx.out) <- u.x
##     return(mx.out)
## }
## 
## ## small
## 
## N <- 80000
## 
## x1_dom <- toupper(letters[1:5])
## x1 <- sample( x1_dom, size=N, replace=TRUE )
## 
## x2_dom <- paste0("x", 1:10)
## x2 <- sample( x2_dom, size=N, replace=TRUE )
## 
## x3_dom <- c("Yes", "No", "NR")
## x3 <- sample( x3_dom, size=N, replace=TRUE )
## 
## 
## aX1 <- f_dummy(x1)
## aX2 <- f_dummy(x2)
## aX3 <- f_dummy(x3)
## 
## 
## X <- cbind(aX1, aX2, aX3)
## 
## 
## d <- ncol(X)
## 
## dim(X)
## 
## 
## b <- rep_len( c(-2, 2), d )
## 
## 
## 
## ystar <-
## X %*% b +
## 10 * X[ , "A"] * X[ , "Yes"] -
## 10 * X[ , "B"] * X[ , "No"]
## xtrue_formula <- eval(parse(text="y ~ . + x1:x3"))
## 
## 
## m_tot <- 5
## 
## 
## 
## Xall <- t( ( t(X) - apply(X, 2, mean) ) / apply(X, 2, sd) )
## 
## #Xall <- 2 * X - 1
## 
## #Xall <- X + rnorm(prod(dim(X)), 0, 1/10)
## 
## 
## 
## 
## xnoint_formula <- eval(parse(text="y ~ ."))
## 
## errs <- rnorm(N, 0, 5)
## 
## y <- ystar + errs
## 
## Nall <- N
## 
## cov(X)
## 
## yall <- y
## 
## sd(y)
## 
## 
## 
## dfx <- data.frame("y"=yall, x1, x2, x3)
## 
## 
## ################### incorrectly fit LM: no interactions
## 
## xlm <- lm(xnoint_formula , data=dfx)
## summary(xlm)
## yhat <- predict(xlm, newdata=dfx)
## sqrt( mean( (yall - yhat)^2 ) )
## 
## 
## ################### incorrectly fit LM: no lower-order interactions
## xlm <- lm(xtrue_formula , data=dfx)
## summary(xlm)
## yhat <- predict(xlm, newdata=dfx)
## sqrt( mean( (yall - yhat)^2 ) )
## 
## 
## 
## 
## 
## xxfoldNumber <- rep_len( 1:4, Nall )
## 
## ufolds <- sort(unique(xxfoldNumber))
## 
## ######################
## 
## 
## xndx_test <- xxfoldNumber %in% 1
## 
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## ##################
## 
## X_train <- Xall[ xndx_train, , drop=FALSE ]
## 
## X_test <- Xall[ xndx_test, , drop=FALSE ]
## 
## y_train <- yall[ xndx_train ]
## 
## y_test <- yall[ xndx_test ]
## 
## ###################
## 
## 
## ########################################################### hybrid
## ########################################################### hybrid
## 
## ##### takes about 10 minutes
## 
## 
## xcmact_hybrid <-
## f_control_mactivate(
## param_sensitivity = 10^11,
## bool_free_w = TRUE,
## w0_seed = 0.05,
## w_col_search = "alternate",
## max_internal_iter = 500, 
## ss_stop = 10^(-12),
## escape_rate = 1.005, 
## Wadj = 1/1,
## force_tries = 0,
## lambda = 1/1000, 
## tol = 10^(-12) 
## )
## 
## 
## Uall <- Xall
## 
## xthis_fold <- ufolds[ 1 ]
## 
## 
## xndx_test <- which( xxfoldNumber %in% xthis_fold )
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## X_train <- Xall[ xndx_train, , drop=FALSE ]
## y_train <- yall[ xndx_train ]
## 
## xxnow <- Sys.time()
## xxls_out <-
## f_fit_hybrid_01(
## X = X_train,
## y = y_train,
## m_tot = m_tot,
## U = X_train,
## m_start = 1,
## mact_control = xcmact_hybrid,
## verbosity = 1
## )
## cat( difftime(Sys.time(), xxnow, units="mins"), "\n" )
## 
## 
## 
## ######### check test error
## 
## U_test <- Xall[ xndx_test, , drop=FALSE ]
## X_test <- Xall[ xndx_test, , drop=FALSE ]
## y_test <- yall[ xndx_test ]
## 
## 
## yhatTT <- matrix(NA, length(xndx_test), m_tot+1)
## 
## for(iimm in 0:m_tot) {
##     yhat_fold <- predict(object=xxls_out, X0=X_test, U0=U_test, mcols=iimm )
##     yhatTT[ , iimm + 1 ] <- yhat_fold
## }
## 
## errs_by_m <- NULL
## for(iimm in 1:ncol(yhatTT)) {
##     yhatX <- yhatTT[ , iimm]
##     errs_by_m[ iimm ] <- sqrt(mean( (y_test - yhatX)^2 ))
##     cat(iimm, "::", errs_by_m[ iimm ])
## }
## 
## 
## ##### plot test RMSE vs m
## 
## plot(0:(length(errs_by_m)-1), errs_by_m, type="l", xlab="m", ylab="RMSE Cost")
## 
## 
## 
## 
## 
## ################## MLR test using 'correct' model
## xtrue_formula_use <- xtrue_formula
## 
## 
## 
## xthis_fold <- ufolds[ 1 ]
## 
## xndx_test <- which( xxfoldNumber %in% xthis_fold )
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## xlm <- lm(xtrue_formula_use , data=dfx[ xndx_train, ])
## yhat <- predict(xlm, newdata=dfx[ xndx_test, ])
## 
## 
## sqrt( mean( (y_test - yhat)^2 ) )
## 
## 
## 
## 
## 
## ####################################  gradient
## ####################################  gradient
## 
## ##### takes about 15-30 minutes
## 
## 
## #Xall <- t( ( t(X) - apply(X, 2, mean) ) / apply(X, 2, sd) )
## 
## #Xall <- 2 * X - 1
## 
## set.seed(777)
## 
## Xall <- t( ( t(X) - apply(X, 2, mean) ) / apply(X, 2, sd) ) + rnorm(prod(dim(X)), 0, 1/50)
## 
## 
## xcmact_gradient <-
## f_control_mactivate(
## param_sensitivity = 10^14,
## bool_free_w = TRUE,
## w0_seed = 0.1,
## w_col_search = "alternate",
## bool_headStart = TRUE,
## ss_stop = 10^(-18), ### very small
## escape_rate = 1.005,
## step_size = 1,
## Wadj = 1/1,
## force_tries = 100,
## lambda = 0
## )
## 
## 
## #### Fit
## 
## 
## Uall <- Xall
## 
## xthis_fold <- ufolds[ 1 ]
## 
## 
## xndx_test <- which( xxfoldNumber %in% xthis_fold )
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## X_train <- Xall[ xndx_train, , drop=FALSE ]
## y_train <- yall[ xndx_train ]
## 
## xxnow <- Sys.time()
## xxls_out <-
## f_fit_gradient_01(
## X = X_train,
## y = y_train,
## m_tot = m_tot,
## U = X_train,
## m_start = 1,
## mact_control = xcmact_gradient,
## verbosity = 1
## )
## cat( difftime(Sys.time(), xxnow, units="mins"), "\n" )
## 
## 
## 
## 
## 
## ######### check test error
## 
## U_test <- Xall[ xndx_test, , drop=FALSE ]
## X_test <- Xall[ xndx_test, , drop=FALSE ]
## y_test <- yall[ xndx_test ]
## 
## 
## yhatTT <- matrix(NA, length(xndx_test), m_tot+1)
## 
## for(iimm in 0:m_tot) {
##     yhat_fold <- predict(object=xxls_out, X0=X_test, U0=U_test, mcols=iimm )
##     yhatTT[ , iimm + 1 ] <- yhat_fold
## }
## 
## errs_by_m <- NULL
## for(iimm in 1:ncol(yhatTT)) {
##     yhatX <- yhatTT[ , iimm]
##     errs_by_m[ iimm ] <- sqrt(mean( (y_test - yhatX)^2 ))
##     cat(iimm, "::", errs_by_m[ iimm ])
## }
## 
## 
## ##### plot test RMSE vs m
## 
## plot(0:(length(errs_by_m)-1), errs_by_m, type="l", xlab="m", ylab="RMSE Cost")
## 
## 


###################################################
### code chunk number 3: a1 (eval = FALSE)
###################################################
## 
## library(mactivate)
## 
## set.seed(777)
## 
## 
## 
## f_dummy <- function(x) {
##     u.x <- sort(unique(x))
##     d <- length(u.x)
##     mx.out <- matrix(0, length(x), d)
##     for (i in 1:d) {
##         mx.out[, i] <- as.integer(u.x[i] == x)
##     }
##     colnames(mx.out) <- u.x
##     return(mx.out)
## }
## 
## 
## 
## ## small
## 
## N <- 80000
## 
## x1_dom <- toupper(letters[1:5])
## x1 <- sample( x1_dom, size=N, replace=TRUE )
## 
## x2_dom <- paste0("x", 1:10)
## x2 <- sample( x2_dom, size=N, replace=TRUE )
## 
## x3_dom <- c("Yes", "No", "NR")
## x3 <- sample( x3_dom, size=N, replace=TRUE )
## 
## 
## aX1 <- f_dummy(x1)
## 
## aX2 <- f_dummy(x2)
## 
## aX3 <- f_dummy(x3)
## 
## X <- cbind(aX1, aX2, aX3)
## 
## d <- ncol(X)
## 
## dim(X)
## 
## 
## 
## b <- rep_len( c(-2/3, 2/3), d )
## 
## 
## ystar <-
## X %*% b +
## 7 * X[ , "A"] * X[ , "Yes"] -
## 7 * X[ , "B"] * X[ , "No"]
## 
## xtrue_formula <- eval(parse(text="y ~ . + x1:x3"))
## 
## 
## ysigmoid <- 1 / (1 + exp(-ystar))
## 
## range(ysigmoid)
## 
## y <- rbinom(size=1, n=N ,prob=ysigmoid)
## 
## 
## m_tot <- 5
## 
## 
## xnoint_formula <- eval(parse(text="y ~ ."))
## 
## Nall <- N
## 
## cov(X)
## 
## yall <- y
## 
## 
## 
## ######## standardize and add a smidge of noise to inputs
## 
## set.seed(777)
## 
## Xall <- t( ( t(X) - apply(X, 2, mean) ) / apply(X, 2, sd) ) + rnorm(prod(dim(X)), 0, 1/40)
## 
## 
## 
## dfx <- data.frame("y"=yall, x1, x2, x3)
## 
## 
## 
## ################### incorrectly fit LM: no interactions
## xglm <- glm(xnoint_formula , data=dfx, family=binomial(link="logit"))
## summary(xglm)
## yhat <- predict(xglm, newdata=dfx, type="response")
## mean( f_logit_cost(y=yall, yhat=yhat) )
## 
## 
## ####### known true
## xglm <- glm(xtrue_formula , data=dfx, family=binomial(link="logit"))
## summary(xglm)
## yhat <- predict(xglm, newdata=dfx, type="response")
## mean( f_logit_cost(y=yall, yhat=yhat) )
## 
## 
## 
## 
## 
## xxfoldNumber <- rep_len( 1:4, Nall )
## 
## ufolds <- sort(unique(xxfoldNumber))
## 
## ######################
## 
## 
## xndx_test <- xxfoldNumber %in% 1
## 
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## ##################
## 
## X_train <- Xall[ xndx_train, , drop=FALSE ]
## 
## X_test <- Xall[ xndx_test, , drop=FALSE ]
## 
## y_train <- yall[ xndx_train ]
## 
## y_test <- yall[ xndx_test ]
## 
## 
## 
## ###################
## 
## ########## descent is very slow at first
## ##### takes about 30 minutes
## 
## xcmact_gradient <-
## f_control_mactivate(
## param_sensitivity = 10^14,
## bool_free_w = TRUE,
## w0_seed = 0.05,
## w_col_search = "alternate",
## bool_headStart = TRUE,
## ss_stop = 10^(-18), ### very small
## escape_rate = 1.005,
## step_size = 1,
## Wadj = 1/1,
## force_tries = 0,
## lambda = 1/1 #### does nothing here
## )
## 
## 
## #### Fit
## 
## 
## Uall <- Xall
## 
## xthis_fold <- ufolds[ 1 ]
## 
## 
## xndx_test <- which( xxfoldNumber %in% xthis_fold )
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## X_train <- Xall[ xndx_train, , drop=FALSE ]
## y_train <- yall[ xndx_train ]
## 
## xxnow <- Sys.time()
## xxls_out <-
## f_fit_gradient_logistic_01(
## X = X_train,
## y = y_train,
## m_tot = m_tot,
## U = X_train,
## m_start = 1,
## mact_control = xcmact_gradient,
## verbosity = 1
## )
## cat( difftime(Sys.time(), xxnow, units="mins"), "\n" )
## 
## 
## 
## ######### check test error
## 
## U_test <- Xall[ xndx_test, , drop=FALSE ]
## X_test <- Xall[ xndx_test, , drop=FALSE ]
## y_test <- yall[ xndx_test ]
## 
## 
## yhatTT <- matrix(NA, length(xndx_test), m_tot+1)
## 
## for(iimm in 0:m_tot) {
##     yhat_fold <- predict(object=xxls_out, X0=X_test, U0=U_test, mcols=iimm )
##     yhatTT[ , iimm + 1 ] <- yhat_fold[[ "p0hat" ]]
## }
## 
## errs_by_m <- NULL
## for(iimm in 1:ncol(yhatTT)) {
##     yhatX <- yhatTT[ , iimm]
##     errs_by_m[ iimm ] <- mean( f_logit_cost(y=y_test, yhat=yhatX) )
##     cat(iimm, "::", errs_by_m[ iimm ])
## }
## 
## 
## 
## ##### plot test Logit Cost vs m
## 
## plot(0:(length(errs_by_m)-1), errs_by_m, type="l", xlab="m", ylab="Logit Cost")
## 
## 
## 
## 
## 
## ################## test off 'correct' model
## xtrue_formula_use <- xtrue_formula
## 
## xthis_fold <- ufolds[ 1 ]
## 
## xndx_test <- which( xxfoldNumber %in% xthis_fold )
## xndx_train <- setdiff( 1:Nall, xndx_test )
## 
## xglm <- glm(xtrue_formula_use , data=dfx[ xndx_train, ], family=binomial(link="logit"))
## yhat <- predict(xglm, newdata=dfx[ xndx_test, ], type="response")
## 
## mean( f_logit_cost(y=y_test, yhat=yhat) )
## 
## 

Try the mactivate package in your browser

Any scripts or data that you put into this service are public.

mactivate documentation built on Aug. 2, 2021, 5:07 p.m.