f_mactivate: Map Activation Layer and Inputs to Polynomial Model Inputs

Description Usage Arguments Details Value Examples

Description

Passes activation inputs, U into activation layer, W, to obtain new polynomial model inputs.

Usage

1

Arguments

U

Numeric matrix, N x d_u of activation inputs.

W

Numeric matrix, d_u x m, the multiplicative activation layer.

Details

This function calculates the multiplicative activations; it maps selected inputs, U, back into the input space using the m-activation layer(s). In practice, the arg W, will be a fitted value, as created by the fitting functions.

Value

Numeric matrix, N x m. Referred to as Xstar elsewhere in this documentation.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
library(mactivate)

set.seed(777)


d <- 7
N <- 15000

X <- matrix(rnorm(N*d, 0, 1), N, d) ####

colnames(X) <- paste0("x", I(1:d))

############# primary effects
b <- rep_len( c(-1/4, 1/4), d )



###########

xxA <- (X[ , 1]+1/3) * (X[ , 1]-1/3) * (X[ , 3]+1/3)
xxB <- (X[ , 2]+0) * (X[ , 2]+1/3) * (X[ , 3]-0) * (X[ , 3]-1/3)
xxC <- (X[ , 3]+1/3) * (X[ , 3]-1/3)

ystar <-
X %*% b +
1/3 * xxA -
1/2 * xxB +
1/3 * xxC


#############

xs2 <- "y ~ . "

xtrue_formula <- eval(parse(text=xs2))

xnoint_formula <- eval(parse(text="y ~ . - xxA - xxB - xxC"))



yerrs <- rnorm(N, 0, 3)

y <- ystar + yerrs

########## standardize X
Xall <- t( ( t(X) - apply(X, 2, mean) ) / apply(X, 2, sd) )
yall <- y
Nall <- N


####### fold index
xxfoldNumber <- rep_len(1:2, N)

ufolds <- sort(unique(xxfoldNumber)) ; ufolds


############### predict
############### predict


dfx <- data.frame("y"=yall, Xall, xxA, xxB, xxC)

tail(dfx)



################### incorrectly fit LM: no interactions

xlm <- lm(xnoint_formula , data=dfx)
summary(xlm)
yhat <- predict(xlm, newdata=dfx)
sqrt( mean( (yall - yhat)^2 ) )



################### correctly fit LM
xlm <- lm(xtrue_formula, data=dfx)
summary(xlm)
yhat <- predict(xlm, newdata=dfx)
sqrt( mean( (yall - yhat)^2 ) )





################ fit using hybrid m-activation
###### takes about 2 minutes

xcmact_hybrid <-
f_control_mactivate(
param_sensitivity = 10^12,
bool_free_w       = TRUE,
w0_seed           = 0.1,
w_col_search      = "alternate",
max_internal_iter = 500, #####
ss_stop           = 10^(-14), ###
escape_rate       = 1.005,
Wadj              = 1/1,
force_tries       = 0,
lambda            = 0/10000, ###
tol               = 10^(-14) ###
)




#### Fit

m_tot <- 7

Uall <- cbind(Xall, Xall)
colnames(Uall) <- paste0(rep(c("a_", "b_"), each=d), colnames(Uall))

head(Uall)

xthis_fold <- ufolds[ 1 ]


xndx_test <- which( xxfoldNumber %in% xthis_fold )
xndx_train <- setdiff( 1:Nall, xndx_test )

X_train <- Xall[ xndx_train, , drop=FALSE ]
y_train <- yall[ xndx_train ]
U_train <- Uall[ xndx_train, , drop=FALSE ]

xxnow <- Sys.time()
xxls_out <-
f_fit_hybrid_01(
X = X_train,
y = y_train,
m_tot = m_tot,
U = U_train,
m_start = 1,
mact_control = xcmact_hybrid,
verbosity = 1
)
cat( difftime(Sys.time(), xxnow, units="mins"), "\n" )



######### check test error

U_test <- Uall[ xndx_test, , drop=FALSE ]
X_test <- Xall[ xndx_test, , drop=FALSE ]
y_test <- yall[ xndx_test ]


yhatTT <- matrix(NA, length(xndx_test), m_tot+1)

for(iimm in 0:m_tot) {
    yhat_fold <- predict(object=xxls_out, X0=X_test, U0=U_test, mcols=iimm )
    yhatTT[ , iimm + 1 ] <- yhat_fold
}

errs_by_m <- NULL
for(iimm in 1:ncol(yhatTT)) {
    yhatX <- yhatTT[ , iimm]
    errs_by_m[ iimm ] <- sqrt(mean( (y_test - yhatX)^2 ))
    cat(iimm, "::", errs_by_m[ iimm ])
}

plot(0:(length(errs_by_m)-1), errs_by_m, type="l", xlab="m", ylab="RMSE Cost")




##################

xthis_fold <- ufolds[ 1 ]

xndx_test <- which( xxfoldNumber %in% xthis_fold )
xndx_train <- setdiff( 1:Nall, xndx_test )

xlm <- lm(xtrue_formula , data=dfx[ xndx_train, ])
yhat <- predict(xlm, newdata=dfx[ xndx_test, ])

sqrt( mean( (y_test - yhat)^2 ) )


################ hatXstar

X_test <- Xall[ xndx_test, ]
y_test <- yall[ xndx_test ]

Xstar_test <- f_mactivate(U=U_test, W=xxls_out[[ length(xxls_out) ]][[ "What" ]])
Xi <- cbind(X_test, Xstar_test)
xlm <- lm(y_test ~ Xi)

sumxlm <- summary(xlm)
print(sumxlm)

xcoefs <- sumxlm$coefficients
xcoefs <- xcoefs[ (2+d):nrow(xcoefs), ] ; xcoefs

xndox_cu <- which( abs(xcoefs[ , "t value"]) > 3 ) ; xndox_cu


bWhat <- xxls_out[[ length(xxls_out) ]][[ "What" ]][ ,  xndox_cu ]
bWhat

wwmag <- apply(bWhat, 1, function(x) { return(sum(abs(x)))} ) ; wwmag

plot(wwmag, type="h", lwd=4,
ylim=c(0, max(wwmag)),
main="W Coefficient Total Magnitute vs Input Term",
xlab="Column of U",
ylab="Sum of magnitudes in fitted W",
cex.lab=1.3
)

mactivate documentation built on Aug. 2, 2021, 5:07 p.m.