# panmagic.6npm1: Panmagic squares of order 4n, 6n+1 and 6n-1 In magic: Create and Investigate Magic Squares

## Description

Produce a panmagic square of order 4n or 6n+/-1 using a classical method

## Usage

 ```1 2 3 4``` ```panmagic.6npm1(n) panmagic.6np1(m) panmagic.6nm1(m) panmagic.4n(m) ```

## Arguments

 `m` Function `panmagic.6np1(m)` returns a panmagic square of order n=6m+1 for m>=1, and function `panmagic.6nm1(m)` returns a panmagic square of order n=6m-1 for m>=1, using a classical method. Function `panmagic.4n(m)` returns a magic square of order n=4m `n` Function `panmagic.6npm1(n)` returns a panmagic square of order n where n=6n+/-1

## Details

Function `panmagic.6npm1(n)` will return a square if `n` is not of the form 6n+/-1, but it is not necessarily magic.

## Author(s)

Robin K. S. Hankin

## References

“Pandiagonal magic square.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 13 February 2013

`magic`
 ```1 2 3 4``` ```panmagic.6np1(1) panmagic.6npm1(13) all(sapply(panmagic.6np1(1:3),is.panmagic)) ```