Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
## -----------------------------------------------------------------------------
# install.packages("maicplus")
library(maicplus)
## -----------------------------------------------------------------------------
library(dplyr)
## -----------------------------------------------------------------------------
data(centered_ipd_twt)
data(adrs_twt)
centered_colnames <- c("AGE", "AGE_SQUARED", "SEX_MALE", "ECOG0", "SMOKE", "N_PR_THER_MEDIAN")
centered_colnames <- paste0(centered_colnames, "_CENTERED")
weighted_data <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames
)
# get dummy binary IPD
pseudo_adrs <- get_pseudo_ipd_binary(
binary_agd = data.frame(
ARM = c("B", "C", "B", "C"),
RESPONSE = c("YES", "YES", "NO", "NO"),
COUNT = c(280, 120, 200, 200)
),
format = "stacked"
)
result <- maic_anchored(
weights_object = weighted_data,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
# binary specific args
binary_robust_cov_type = "HC3"
)
## -----------------------------------------------------------------------------
result$descriptive
## -----------------------------------------------------------------------------
result$inferential$summary
## -----------------------------------------------------------------------------
result$inferential$fit$model_before
result$inferential$fit$res_AC_unadj
result$inferential$fit$res_AB_unadj
## -----------------------------------------------------------------------------
result$inferential$fit$model_after
result$inferential$fit$res_AC
result$inferential$fit$res_AB
## ----echo = FALSE, eval = FALSE-----------------------------------------------
# # heuristic check
# # merge in adrs with ipd_matched
#
# ipd <- adrs_twt
# ipd$weights <- weighted_data$data$weights[match(ipd$USUBJID, weighted_data$data$USUBJID)]
#
# pseudo_ipd <- pseudo_adrs
# pseudo_ipd$weights <- 1
#
# # Change the reference treatment to C
# ipd$ARM <- stats::relevel(as.factor(ipd$ARM), ref = "C")
# pseudo_ipd$ARM <- stats::relevel(as.factor(pseudo_ipd$ARM), ref = "C")
#
# binobj_dat <- glm(RESPONSE ~ ARM, ipd, family = binomial(link = "logit"))
# binobj_dat_adj <- suppressWarnings(glm(RESPONSE ~ ARM, ipd, weights = weights, family = binomial(link = "logit")))
# binobj_agd <- glm(RESPONSE ~ ARM, pseudo_ipd, family = binomial(link = "logit"))
#
# bin_robust_cov <- sandwich::vcovHC(binobj_dat_adj, type = "HC3")
# bin_robust_coef <- lmtest::coeftest(binobj_dat_adj, vcov. = bin_robust_cov)
# bin_robust_ci <- lmtest::coefci(binobj_dat_adj, vcov. = bin_robust_cov)
#
# exp(summary(binobj_dat)$coef[2, "Estimate"])
# exp(summary(binobj_dat_adj)$coef[2, "Estimate"])
#
# bin_robust_ci
# exp(bin_robust_ci)
#
# res_AC <- res_BC <- list()
# res_AC$est <- bin_robust_coef[2, "Estimate"]
# res_AC$se <- bin_robust_coef[2, "Std. Error"]
#
# res_BC$est <- summary(binobj_agd)$coefficients[2, "Estimate"]
# res_BC$se <- summary(binobj_agd)$coefficients[2, "Std. Error"]
#
# res_AB <- bucher(res_AC, res_BC, conf_lv = 0.95)
# print(res_AB, exponentiate = TRUE)
## -----------------------------------------------------------------------------
weighted_data2 <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames,
n_boot_iteration = 100,
set_seed_boot = 1234
)
result_boot <- maic_anchored(
weights_object = weighted_data2,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
boot_ci_type = "perc",
# binary specific args
binary_robust_cov_type = "HC3"
)
result_boot$inferential$fit$boot_res_AB
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.