Nothing
#the below is not strictly needed since it is included in packagesetupandimportsandexamples.R, but I am putting it here to remind you of what namespaces are available in this package
#' @importFrom magrittr %>% %<>% %$% %T>%
#' @import rlang
NULL
#### EXAMPLES ADDED TO DOCUMENTATION FOR oogetdoublemaxcomboteststatistic ####
#' @rdname oogetdoublemaxcomboteststatistic
#' @name oogetdoublemaxcomboteststatistic
#' @examples
#' \donttest{
#'
#' # -------------------------------------------------------------------------------
#' # Example 1: Usage on a single deterministic dataset in which the drug halves
#' # the hazard at all times (i.e., a proportional hazards situation)
#' # -------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#' oodoublerateactive=0.125
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #2.92
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #2.83
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #2.71
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic) and 2.83 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic), 2.83 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.71 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#'
#'
#' # --------------------------------------------------------------------------------------------
#' # Example 2: Usage on a single deterministic dataset in which the drug delays
#' # the event by exactly one month for each subject (i.e., an early treatment effect situation)
#' # --------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateplacebo
#' ) + 1.0 #note the addition of 1.0 month time to event here for the active arm
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #1.66
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #0.53
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #2.07
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #1.66, i.e., just the maximum of 1.66 (from the log-rank test statistic) and 0.53 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #2.07, i.e., just the maximum of 1.66 (from the log-rank test statistic), 0.53 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.07 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#'
#'
#' # -------------------------------------------------------------------------------------------------
#' # Example 3: Usage on a single deterministic dataset in which subjects in the placebo arm all have
#' # the event after being on the study for 1.2 months (i.e., a delayed treatment effect situation)
#' # -------------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateactive=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' base::ifelse(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ) <= 1.2,
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ),
#' 1.2
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #1.55
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #2.28
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #1.35
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic) and 2.28 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic), 2.28 (from the
#' # weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 1.35 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' }
NULL
#### EXAMPLES ADDED TO DOCUMENTATION FOR oogetdoublemaxcombotestpvalue ####
#' @rdname oogetdoublemaxcombotestpvalue
#' @name oogetdoublemaxcombotestpvalue
#' @examples
#' \donttest{
#'
#' # -------------------------------------------------------------------------------
#' # Example 1: Usage on a single deterministic dataset in which the drug halves
#' # the hazard at all times (i.e., a proportional hazards situation)
#' # -------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#' oodoublerateactive=0.125
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 2.92
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.0017
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 2.83
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.0023
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 2.71
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.0033
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic) and 2.83
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.0028
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic), 2.83
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.71 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.0032
#'
#'
#' # --------------------------------------------------------------------------------------------
#' # Example 2: Usage on a single deterministic dataset in which the drug delays
#' # the event by exactly one month for each subject (i.e., an early treatment effect situation)
#' # --------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateplacebo
#' ) + 1.0 #note the addition of 1.0 month time to event here for the active arm
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 1.66
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.05
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 0.53
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.30
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 2.07
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.02
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 1.66, i.e., just the maximum of 1.66 (from the log-rank test statistic) and 0.53
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.07
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.07, i.e., just the maximum of 1.66 (from the log-rank test statistic), 0.53
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.07 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.03
#'
#'
#' # -------------------------------------------------------------------------------------------------
#' # Example 3: Usage on a single deterministic dataset in which subjects in the placebo arm all have
#' # the event after being on the study for 1.2 months (i.e., a delayed treatment effect situation)
#' # -------------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateactive=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' base::ifelse(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ) <= 1.2,
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ),
#' 1.2
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 1.55
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.06
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 2.28
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.01
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 1.35
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.09
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic) and 2.28
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.02
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic), 2.28
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 1.35 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.02
#' }
NULL
#### EXAMPLES ADDED TO DOCUMENTATION FOR oogetdoublemaxcombocutoff ####
#' @rdname oogetdoublemaxcombocutoff
#' @name oogetdoublemaxcombocutoff
#' @examples
#' \donttest{
#'
#' # -------------------------------------------------------------------------------
#' # Example 1: Usage on a single deterministic dataset in which the drug halves
#' # the hazard at all times (i.e., a proportional hazards situation)
#' # -------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#' oodoublerateactive=0.125
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 2.92
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.0017
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.92 > 1.96), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 2.83
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.0023
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.83 > 1.96), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 2.71
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.0033
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.71 > 1.96), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic) and 2.83
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.0028
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 2.13 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.92 > 2.13), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic), 2.83
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.71 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.0032
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10,
#' oodoublealpha = 0.025,
#' oointnmaxiter = 100L
#' ) #cutoff of 2.19 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.92 > 2.19), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#'
#' # --------------------------------------------------------------------------------------------
#' # Example 2: Usage on a single deterministic dataset in which the drug delays
#' # the event by exactly one month for each subject (i.e., an early treatment effect situation)
#' # --------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateplacebo
#' ) + 1.0 #note the addition of 1.0 month time to event here for the active arm
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 1.66
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.05
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 1.66 < 1.96), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 0.53
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.30
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 0.53 < 1.96), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 2.07
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.02
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.07 > 1.96), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 1.66, i.e., just the maximum of 1.66 (from the log-rank test statistic) and 0.53
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.07
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 2.13 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 1.66 < 2.13), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.07, i.e., just the maximum of 1.66 (from the log-rank test statistic), 0.53
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 2.07 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.03
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10,
#' oodoublealpha = 0.025,
#' oointnmaxiter = 100L
#' ) #cutoff of 2.20 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 2.06 < 2.20), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#'
#' # -------------------------------------------------------------------------------------------------
#' # Example 3: Usage on a single deterministic dataset in which subjects in the placebo arm all have
#' # the event after being on the study for 1.2 months (i.e., a delayed treatment effect situation)
#' # -------------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateactive=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' base::ifelse(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ) <= 1.2,
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ),
#' 1.2
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' #standardized log-rank test statistic
#' oolistweightingfunctionsJustLogrank=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #test statistic 1.55
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
#' ) #p-value 0.06
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 1.55 < 1.96), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#' #which places greater weight on later times
#' oolistweightingfunctionsJustFlemingHarrington01=base::list(
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #test statistic 2.28
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
#' ) #p-value 0.01
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.28 > 1.96), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#' #which places greater weight on earlier times
#' oolistweightingfunctionsJustFlemingHarrington10=base::list(
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #test statistic 1.35
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
#' ) #p-value 0.09
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10,
#' oodoublealpha = 0.025
#' ) #cutoff of 1.96 for the max-combo test statistic
#' #the max-combo test statistic does not exceed the cutoff (since 1.35 < 1.96), so you fail to reject
#' #that the survival curves in the two arms are the same at the 0.025 level
#'
#' #the max-combo test statistic based on the first two of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic) and 2.28
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
#' ) #p-value 0.02
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01,
#' oodoublealpha = 0.025
#' ) #cutoff of 2.13 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.28 > 2.13), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#'
#' #the max-combo test statistic based on the first three of the above
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic), 2.28
#' # (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
#' # 1.35 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
#' maxcombo::oogetdoublemaxcombotestpvalue(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
#' ) #p-value 0.02
#' maxcombo::oogetdoublemaxcombocutoff(
#' oodataframe = oodataframe,
#' oolistfunctionweightasafunctionofstminus =
#' oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10,
#' oodoublealpha = 0.025,
#' oointnmaxiter = 200L
#' ) #cutoff of 2.15 for the max-combo test statistic
#' #the max-combo test statistic exceeds the cutoff (since 2.28 > 2.15), so you can declare that
#' #the survival curves in the two arms are statistically significantly different at the 0.025 level
#' }
NULL
#### EXAMPLES ADDED TO DOCUMENTATION FOR oogetdoublemaxcombocutoffgroupsequential ####
#' @rdname oogetdoublemaxcombocutoffgroupsequential
#' @name oogetdoublemaxcombocutoffgroupsequential
#' @examples
#' \donttest{
#'
#' #this function is used in the examples below to create synthetic earlier looks
#' #at the simulated datasets.
#' oogetdataframeearlierlookattime=function(oodataframe,oodoubletime)
#' {
#' dplyr::mutate(
#' dplyr::filter(oodataframe,Atime <= oodoubletime),
#' Bobserved = base::ifelse(Btime <= oodoubletime,Bobserved,FALSE),
#' Cobserved = base::ifelse(Ctime <= oodoubletime,Cobserved,FALSE),
#' Btime = base::pmin(Btime,oodoubletime),
#' Ctime = base::pmin(Ctime,oodoubletime)
#' )
#' }
#'
#' # -------------------------------------------------------------------------------
#' # Example 1: Usage on a single deterministic dataset in which the drug halves
#' # the hazard at all times (i.e., a proportional hazards situation)
#' # -------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#' oodoublerateactive=0.125
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the final analysis takes place at absolute time 6.0 months, and no other
#' #censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' oodataframeinterimanalysis=oogetdataframeearlierlookattime(
#' oodataframe = oodataframe,
#' oodoubletime = 3.0 #the interim analysis takes place at absolute time 3.0 months
#' )
#' oodataframefinalanalysis=oodataframe #the final analysis takes place at absolute time 6.0 months
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at both the interim and the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.36 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.36 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.92 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 1.96 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.92 > 1.96),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic and the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.36 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.36 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.92 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.12 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.92 > 2.12),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic, the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, and the weighted log-rank test statistic with Fleming-Harrington 1-0
#' #weighting function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.36 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.36 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.92 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.19 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.92 > 2.19),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic and the weighted log-rank test
#' #statistic with Fleming-Harrington 0-1 weighting function at the interim analysis and to use
#' #the max-combo test statistic based on the standardized log-rank test statistic, the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater weight
#' #on later times, and the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting
#' #function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.56 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 3.13 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.56 < 3.13)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.92 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.20 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.92 > 2.20),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#' # --------------------------------------------------------------------------------------------
#' # Example 2: Usage on a single deterministic dataset in which the drug delays
#' # the event by exactly one month for each subject (i.e., an early treatment effect situation)
#' # --------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateplacebo=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateplacebo
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateplacebo
#' ) + 1.0 #note the addition of 1.0 month time to event here for the active arm
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' oodataframeinterimanalysis=oogetdataframeearlierlookattime(
#' oodataframe = oodataframe,
#' oodoubletime = 3.0 #the interim analysis takes place at absolute time 3.0 months
#' )
#' oodataframefinalanalysis=oodataframe #the final analysis takes place at absolute time 6.0 months
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at both the interim and the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.51 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.51 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 1.66 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 1.96 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis does not exceed the cutoff
#' #(since 1.66 < 1.96), so you fail to reject that the survival curves in the two arms are
#' #the same at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic and the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.51 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.51 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 1.66 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.12 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis does not exceed the cutoff
#' #(since 1.66 < 2.12), so you fail to reject that the survival curves in the two arms are
#' #the same at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic, the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, and the weighted log-rank test statistic with Fleming-Harrington 1-0
#' #weighting function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.51 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.51 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.07 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.19 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis does not exceed the cutoff
#' #(since 2.07 < 2.19), so you fail to reject that the survival curves in the two arms are
#' #the same at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic and the weighted log-rank test
#' #statistic with Fleming-Harrington 0-1 weighting function, which places greater weight on
#' #later times, at the interim analysis and to use the max-combo test statistic based on
#' #the standardized log-rank test statistic, the weighted log-rank test statistic with
#' #Fleming-Harrington 0-1 weighting function, which places greater weight on later times,
#' #and the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting
#' #function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.51 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 3.13 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.51 < 3.13)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.07 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.20 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis does not exceed the cutoff
#' #(since 2.07 < 2.20), so you fail to reject that the survival curves in the two arms are
#' #the same at the 0.025 level
#'
#'
#' #plan to use the standardized log-rank test statistic and the weighted log-rank test
#' #statistic with Fleming-Harrington 1-0 weighting function, which places greater weight on
#' #earlier times, at the interim analysis and to use the max-combo test statistic based on
#' #the standardized log-rank test statistic, the weighted log-rank test statistic with
#' #Fleming-Harrington 1-0 weighting function, which places greater weight on earlier times,
#' #at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 2.71 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 3.02 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 2.71 < 3.02)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.07 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.06 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.07 > 2.06),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#' # -------------------------------------------------------------------------------------------------
#' # Example 3: Usage on a single deterministic dataset in which subjects in the placebo arm all have
#' # the event after being on the study for 1.2 months (i.e., a delayed treatment effect situation)
#' # -------------------------------------------------------------------------------------------------
#'
#' oointnparticipants=100L
#' oointnparticipantsplacebo=oointnparticipants/2L
#' oointnparticipantsactive=oointnparticipants/2L
#'
#' oodoublerateactive=0.250
#'
#' oovecinttreated=c(
#' base::rep(0L,length.out=oointnparticipantsplacebo),
#' base::rep(1L,length.out=oointnparticipantsactive)
#' )
#' oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
#' base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
#' )
#' #the duration of time from when the subject enters the study until the subject experiences the event
#' oovecdoubletAtoB=c(
#' base::ifelse(
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ) <= 1.2,
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
#' rate=oodoublerateactive
#' ),
#' 1.2
#' ),
#' stats::qexp(
#' base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
#' rate=oodoublerateactive
#' )
#' )
#' oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#' #the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
#' oovecdoubletCabsolute=6.0
#' oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
#' oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
#' oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
#'
#' oodataframe=dplyr::tibble(id=1L:oointnparticipants,
#' treated=oovecinttreated,
#' Atime=oovecdoubletAabsolute,
#' Btime=oovecdoubletminBvsC,
#' Bobserved=oovecboolobservedB,
#' Ctime=oovecdoubletminBvsC,
#' Cobserved=oovecboolobservedC)
#'
#' oodataframeinterimanalysis=oogetdataframeearlierlookattime(
#' oodataframe = oodataframe,
#' oodoubletime = 3.0 #the interim analysis takes place at absolute time 3.0 months
#' )
#' oodataframefinalanalysis=oodataframe #the final analysis takes place at absolute time 6.0 months
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at both the interim and the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 1.24 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 1.24 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 1.55 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 1.96 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis does not exceed the cutoff
#' #(since 1.55 < 1.96), so you fail to reject that the survival curves in the two arms are
#' #the same at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic and the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 1.24 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 1.24 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.28 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.12 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.28 > 2.12),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic at the interim analysis and to use the
#' #max-combo test statistic based on the standardized log-rank test statistic, the weighted
#' #log-rank test statistic with Fleming-Harrington 0-1 weighting function, which places greater
#' #weight on later times, and the weighted log-rank test statistic with Fleming-Harrington 1-0
#' #weighting function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 1.24 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 2.97 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 1.24 < 2.97)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.28 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.16 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.28 > 2.16),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#'
#'
#'
#' #plan to use the standardized log-rank test statistic and the weighted log-rank test
#' #statistic with Fleming-Harrington 0-1 weighting function, which places greater weight on
#' #later times, at the interim analysis and to use the max-combo test statistic based on
#' #the standardized log-rank test statistic, the weighted log-rank test statistic with
#' #Fleming-Harrington 0-1 weighting function, which places greater weight on later times,
#' #and the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting
#' #function, which places greater weight on earlier times, at the final analysis
#' oolistlistweightingfunctionsbytimepoint=base::list(
#' interim=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
#' ),
#' final=base::list(
#' logrank=function(stminus){ base::return(1.0) },
#' flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
#' flemingharrington10=function(stminus){ base::return(stminus) }
#' )
#' )
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframeinterimanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[1L]]
#' ) #max-combo test statistic 1.88 at the interim analysis
#' oodoublecutoffforinterimanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:1L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = base::vector(mode="double",length=0L),
#' oodoublealphaincrement = 0.06*0.025
#' )
#' oodoublecutoffforinterimanalysis #cutoff of 3.12 for the max-combo test statistic at
#' #the interim analysis
#' #the max-combo test statistic at the interim analysis does not exceed the cutoff (since 1.88 < 3.12)
#' #so the experiment continues until the final analysis.
#'
#' maxcombo::oogetdoublemaxcomboteststatistic(
#' oodataframe = oodataframefinalanalysis,
#' oolistfunctionweightasafunctionofstminus = oolistlistweightingfunctionsbytimepoint[[2L]]
#' ) #max-combo test statistic 2.28 at the final analysis
#' oodoublecutoffforfinalanalysis=maxcombo::oogetdoublemaxcombocutoffgroupsequential(
#' oolistdataframesbytimepoint = base::list(oodataframeinterimanalysis,oodataframefinalanalysis),
#' oolistlistweightingfunctionsbytimepoint = oolistlistweightingfunctionsbytimepoint[1L:2L],
#' oovecdoublecutoffsUsedInEachPreviousTimepoint = c(oodoublecutoffforinterimanalysis),
#' oodoublealphaincrement = 0.025 - 0.06*0.025
#' )
#' oodoublecutoffforfinalanalysis #cutoff of 2.16 for the max-combo test statistic at
#' #the final analysis
#' #the max-combo test statistic at the final analysis exceeds the cutoff (since 2.28 > 2.16),
#' #so you can declare that the survival curves in the two arms are statistically significantly
#' #different at the 0.025 level
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.