Description Usage Arguments Value Examples
View source: R/maxcombofunctions.R
This function computes the p-value for the max-combo test statistic for comparing times to an event from two different arms at a single timepoint; please note that this is not a p-value for a group sequential test procedure involving two or more timepoints, but rather a p-value for a scenario in which there is only one planned analysis timepoint. The max-combo test statistic is the maximum of multiple standardized weighted log-rank test statistics. The user of the function is expected to provide the function with a data frame containing the time-to-event data for the two arms; additionally, this data frame is expected to be in a particular format (see more details below). Additionally, the user of the function is expected to provide a list of one or more weighting functions to use for the respective one or more weighted log-rank tests; in particular this function only allows the user to specify a weighting function that takes as input the Kaplan-Meier estimate for the survival curve obtained by pooling both of the two arms (a double that is between 0 and 1, inclusive) and provides as output a weight (a double that is typically greater than or equal to zero); note that the Fleming-Harrington class of weighting functions falls within what can be specified in this way. If no list of weighting functions is provided, a single weighting function that is identically 1 is used, which means that the test statistic that is used is exactly equal to the usual standardized log-rank test statistic.
The supplied data frame is expected to have one row for each subject. The data frame should have the following columns:
id
- a variable that takes a unique value for each subject
treated
- should be 0 for subjects in the control arm and 1 for subjects in the experimental arm.
Atime
- the absolute time the subject enters the study
Btime
- the absolute time of an event or censoring, whichever comes first
Bobserved
- should be TRUE if the event was observed
Ctime
- the absolute time of an event or censoring, whichever comes first
Cobserved
- should be TRUE if censoring occurred (and so the event was not observed)
The columns in the data frame do not have to be named exactly as above; however, if different names are used, those names must be specified as arguments to the function. Please see below for more detail regarding how to specify those names and for more detail regarding the expectations of the function regarding the columns in the data frame.
1 2 3 4 5 6 7 8 9 10 11 12 13 | oogetdoublemaxcombotestpvalue(
oodataframe,
oolistfunctionweightasafunctionofstminus = base::list(function(oodoublestminus) {
base::return(1) }),
oostringorsymbolid = "id",
oostringorsymboltreated = "treated",
oostringorsymbolAtime = "Atime",
oostringorsymbolBtime = "Btime",
oostringorsymbolBobserved = "Bobserved",
oostringorsymbolCtime = "Ctime",
oostringorsymbolCobserved = "Cobserved",
ooodoublemaxcomboteststatistic = NULL
)
|
oodataframe |
A data frame containing time-to-event data from two different arms. |
oolistfunctionweightasafunctionofstminus |
A list of one or more weighting functions. Each weighting function should take as input the pooled Kaplan-Meier estimate of survival across the two arms (i.e., a double between 0 and 1, inclusive) and output a single weight (i.e., a double, typically greater than or equal to zero). Defaults to the following list of a single weighting function that is identically 1, which results in the usual standardized log-rank test statistic: |
oostringorsymbolid |
The name of the column in the supplied data frame for the id variable. Defaults to "id". The id variable should take a unique value for each subject. The column with this name in the data frame can be an integer vector with a different integer for each subject; the function will most likely also work if the column is a character vector with a different value for each subject. |
oostringorsymboltreated |
The name of the column in the supplied data frame for a treatment indicator variable. Defaults to "treated". The treatment indicator variable is a variable indicating which of the two arms the subject is in. The column with this name in the data frame should be an integer vector that takes only the value 0L (e.g., for placebo) or the value 1L (e.g., for a new drug or therapy). The test statistic that is used by this function will generally be for a test that the arm represented by subjects with treatment indicator 1L is superior to the arm represented by subjects with treatment indicator 0L (i.e., a one-sided test of superiority of arm 1 over arm 0). |
oostringorsymbolAtime |
The name of the column in the supplied data frame for the Atime variable. Defaults to "Atime". Atime is the absolute time the subject enters the study. The column with this name in the data frame can be vector of doubles; the function will most likely also work if the column is a vector of integers. |
oostringorsymbolBtime |
The name of the column in the supplied data frame for the Btime variable. Defaults to "Btime". Btime is the absolute time of an event or censoring, whichever comes first. The column with this name in the data frame can be vector of doubles; the function will most likely also work if the column is a vector of integers. |
oostringorsymbolBobserved |
The name of the column in the supplied data frame for the Bobserved variable. Defaults to "Bobserved". Bobserved should be TRUE if the event was observed. The column with this name in the data frame can be a logical vector; the function will most likely also work if the column is a vector of integers (i.e., with 1L in place of TRUE and 0L in place of FALSE). |
oostringorsymbolCtime |
The name of the column in the supplied data frame for the Ctime variable. Defaults to "Ctime". Ctime is the absolute time of an event or censoring, whichever comes first. The column with this name in the data frame can be vector of doubles; the function will most likely also work if the column is a vector of integers. |
oostringorsymbolCobserved |
The name of the column in the supplied data frame for the Cobserved variable. Defaults to "Cobserved". Cobserved should be TRUE if censoring occurred (and so the event was not observed). The column with this name in the data frame can be a logical vector; the function will most likely also work if the column is a vector of integers (i.e., with 1L in place of TRUE and 0L in place of FALSE). |
ooodoublemaxcomboteststatistic |
A value for a hypothetical max-combo test statistic that could have been observed (but was not) can be provided to this argument, in which case the p-value for that hypothetical statistic that could have been observed (but was not) is what is provided. If |
A double
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | # -------------------------------------------------------------------------------
# Example 1: Usage on a single deterministic dataset in which the drug halves
# the hazard at all times (i.e., a proportional hazards situation)
# -------------------------------------------------------------------------------
oointnparticipants=100L
oointnparticipantsplacebo=oointnparticipants/2L
oointnparticipantsactive=oointnparticipants/2L
oodoublerateplacebo=0.250
oodoublerateactive=0.125
oovecinttreated=c(
base::rep(0L,length.out=oointnparticipantsplacebo),
base::rep(1L,length.out=oointnparticipantsactive)
)
oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
)
#the duration of time from when the subject enters the study until the subject experiences the event
oovecdoubletAtoB=c(
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
rate=oodoublerateplacebo
),
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
rate=oodoublerateactive
)
)
oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
oovecdoubletCabsolute=6.0
oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
oodataframe=dplyr::tibble(id=1L:oointnparticipants,
treated=oovecinttreated,
Atime=oovecdoubletAabsolute,
Btime=oovecdoubletminBvsC,
Bobserved=oovecboolobservedB,
Ctime=oovecdoubletminBvsC,
Cobserved=oovecboolobservedC)
#standardized log-rank test statistic
oolistweightingfunctionsJustLogrank=base::list(
logrank=function(stminus){ base::return(1.0) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #test statistic 2.92
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #p-value 0.0017
#standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#which places greater weight on later times
oolistweightingfunctionsJustFlemingHarrington01=base::list(
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #test statistic 2.83
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #p-value 0.0023
#standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#which places greater weight on earlier times
oolistweightingfunctionsJustFlemingHarrington10=base::list(
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #test statistic 2.71
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #p-value 0.0033
#the max-combo test statistic based on the first two of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic) and 2.83
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #p-value 0.0028
#the max-combo test statistic based on the first three of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #test statistic 2.92, i.e., just the maximum of 2.92 (from the log-rank test statistic), 2.83
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
# 2.71 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #p-value 0.0032
# --------------------------------------------------------------------------------------------
# Example 2: Usage on a single deterministic dataset in which the drug delays
# the event by exactly one month for each subject (i.e., an early treatment effect situation)
# --------------------------------------------------------------------------------------------
oointnparticipants=100L
oointnparticipantsplacebo=oointnparticipants/2L
oointnparticipantsactive=oointnparticipants/2L
oodoublerateplacebo=0.250
oovecinttreated=c(
base::rep(0L,length.out=oointnparticipantsplacebo),
base::rep(1L,length.out=oointnparticipantsactive)
)
oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
)
#the duration of time from when the subject enters the study until the subject experiences the event
oovecdoubletAtoB=c(
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
rate=oodoublerateplacebo
),
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
rate=oodoublerateplacebo
) + 1.0 #note the addition of 1.0 month time to event here for the active arm
)
oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
oovecdoubletCabsolute=6.0
oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
oodataframe=dplyr::tibble(id=1L:oointnparticipants,
treated=oovecinttreated,
Atime=oovecdoubletAabsolute,
Btime=oovecdoubletminBvsC,
Bobserved=oovecboolobservedB,
Ctime=oovecdoubletminBvsC,
Cobserved=oovecboolobservedC)
#standardized log-rank test statistic
oolistweightingfunctionsJustLogrank=base::list(
logrank=function(stminus){ base::return(1.0) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #test statistic 1.66
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #p-value 0.05
#standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#which places greater weight on later times
oolistweightingfunctionsJustFlemingHarrington01=base::list(
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #test statistic 0.53
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #p-value 0.30
#standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#which places greater weight on earlier times
oolistweightingfunctionsJustFlemingHarrington10=base::list(
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #test statistic 2.07
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #p-value 0.02
#the max-combo test statistic based on the first two of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #test statistic 1.66, i.e., just the maximum of 1.66 (from the log-rank test statistic) and 0.53
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #p-value 0.07
#the max-combo test statistic based on the first three of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #test statistic 2.07, i.e., just the maximum of 1.66 (from the log-rank test statistic), 0.53
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
# 2.07 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #p-value 0.03
# -------------------------------------------------------------------------------------------------
# Example 3: Usage on a single deterministic dataset in which subjects in the placebo arm all have
# the event after being on the study for 1.2 months (i.e., a delayed treatment effect situation)
# -------------------------------------------------------------------------------------------------
oointnparticipants=100L
oointnparticipantsplacebo=oointnparticipants/2L
oointnparticipantsactive=oointnparticipants/2L
oodoublerateactive=0.250
oovecinttreated=c(
base::rep(0L,length.out=oointnparticipantsplacebo),
base::rep(1L,length.out=oointnparticipantsactive)
)
oovecdoubletAabsolute=c( #the start time, i.e., when the subject enters the study.
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsplacebo),
base::seq(from=0.0,to=2.0,length.out=oointnparticipantsactive)
)
#the duration of time from when the subject enters the study until the subject experiences the event
oovecdoubletAtoB=c(
base::ifelse(
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
rate=oodoublerateactive
) <= 1.2,
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsplacebo),
rate=oodoublerateactive
),
1.2
),
stats::qexp(
base::seq(from=0.0,to=0.98,length.out=oointnparticipantsactive),
rate=oodoublerateactive
)
)
oovecdoubletBabsolute=oovecdoubletAabsolute + oovecdoubletAtoB
#the analysis takes place at absolute time 6.0 months, and no other censoring (e.g., dropout) occurs
oovecdoubletCabsolute=6.0
oovecdoubletminBvsC=base::pmin(oovecdoubletBabsolute,oovecdoubletCabsolute)
oovecboolobservedB=(oovecdoubletBabsolute < oovecdoubletCabsolute)
oovecboolobservedC=(oovecdoubletCabsolute <= oovecdoubletBabsolute)
oodataframe=dplyr::tibble(id=1L:oointnparticipants,
treated=oovecinttreated,
Atime=oovecdoubletAabsolute,
Btime=oovecdoubletminBvsC,
Bobserved=oovecboolobservedB,
Ctime=oovecdoubletminBvsC,
Cobserved=oovecboolobservedC)
#standardized log-rank test statistic
oolistweightingfunctionsJustLogrank=base::list(
logrank=function(stminus){ base::return(1.0) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #test statistic 1.55
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustLogrank
) #p-value 0.06
#standardized weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function,
#which places greater weight on later times
oolistweightingfunctionsJustFlemingHarrington01=base::list(
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #test statistic 2.28
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington01
) #p-value 0.01
#standardized weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function,
#which places greater weight on earlier times
oolistweightingfunctionsJustFlemingHarrington10=base::list(
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #test statistic 1.35
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsJustFlemingHarrington10
) #p-value 0.09
#the max-combo test statistic based on the first two of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic) and 2.28
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus = oolistweightingfunctionsLogrankAndFlemingHarrington01
) #p-value 0.02
#the max-combo test statistic based on the first three of the above
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10=base::list(
logrank=function(stminus){ base::return(1.0) },
flemingharrington01=function(stminus){ base::return(1.0 - stminus) },
flemingharrington10=function(stminus){ base::return(stminus) }
)
maxcombo::oogetdoublemaxcomboteststatistic(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #test statistic 2.28, i.e., just the maximum of 1.55 (from the log-rank test statistic), 2.28
# (from the weighted log-rank test statistic with Fleming-Harrington 0-1 weighting function), and
# 1.35 (from the weighted log-rank test statistic with Fleming-Harrington 1-0 weighting function)
maxcombo::oogetdoublemaxcombotestpvalue(
oodataframe = oodataframe,
oolistfunctionweightasafunctionofstminus =
oolistweightingfunctionsLogrankAndFlemingHarrington01AndFlemingHarrington10
) #p-value 0.02
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.