empiricalC | R Documentation |
Density, distribution function and random generation for a continuous empirical distribution.
dempiricalC(x, min, max, values, prob=NULL, log=FALSE)
pempiricalC(q, min, max, values, prob=NULL, lower.tail=TRUE, log.p=FALSE)
qempiricalC(p, min, max, values, prob=NULL, lower.tail=TRUE, log.p=FALSE)
rempiricalC(n, min, max, values, prob=NULL)
x , q |
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of random values. If ‘length(n) > 1’, the length is taken to be the number required. |
min |
A finite minimal value. |
max |
A finite maximal value. |
values |
Vector of numerical values. |
prob |
Optional vector of count or probabilities. |
log , log.p |
logical; if ‘TRUE’, probabilities ‘p’ are given as ‘log(p)’. |
lower.tail |
logical; if ‘TRUE’ (default), probabilities are ‘P[X <= x]’, otherwise, ‘P[X > x]’. |
Given p_{i}
, the distribution value for x_{i}
with ‘i’ the rank i = 0, 1, 2, \ldots, N+1
,
x_{0}=min
and x_{N+1}=max
the
density is:
f(x)=p_{i}+(\frac{x-x_{i}}{x_{i+1}-x_{i}})(p_{i+1}-p_{i})
The ‘p’ values being normalized to give the distribution a unit area.
‘min’ and/or ‘max’ and/or ‘values’ and/or ‘prob’ may vary: in that case, ‘min’ and/or ‘max’ should be vector(s). ‘values’ and/or ‘prob’ should be matrixes, the first row being used for the first element of ‘x’, ‘q’, ‘p’ or the first random value, the second row for the second element of ‘x’, ‘q’, ‘p’ or random value, ... Recycling is permitted if the number of elements of ‘min’ or ‘max’ or the number of rows of ‘prob’ and ‘values’ are equal or equals one.
‘dempiricalC’ gives the density, ‘pempiricalC’ gives the distribution function, ‘qempiricalC’ gives the quantile function and ‘rempiricalC’ generates random deviates.
empiricalD
prob <- c(2, 3, 1, 6, 1)
values <- 1:5
par(mfrow=c(1, 2))
curve(dempiricalC(x, min=0, max=6, values, prob), from=-1, to=7, n=1001)
curve(pempiricalC(x, min=0, max=6, values, prob), from=-1, to=7, n=1001)
## Varying values
(values <- matrix(1:10, ncol=5))
## the first x apply to the first row
## the second x to the second one
dempiricalC(c(1, 1), values, min=0, max=11)
##Use with mc2d
val <- c(100, 150, 170, 200)
pr <- c(6, 12, 6, 6)
out <- c("min", "mean", "max")
##First Bootstrap in the uncertainty dimension
##with rempirical D
(x <- mcstoc(rempiricalD, type = "U", outm = out, nvariates = 30, values = val, prob = pr))
##Continuous Empirical distribution in the variability dimension
mcstoc(rempiricalC, type = "VU", values = x, min=90, max=210)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.