| GMMlogreturn | R Documentation |
Gaussian mixtures for modeling the distribution of financial log-returns.
GMMlogreturn(y, ...)
## S3 method for class 'GMMlogreturn'
summary(object, ...)
y |
A numeric vector providing the log-returns of a financial stock. |
... |
Further arguments passed to |
object |
An object of class |
Let P_t be the price of a financial stock for the current time frame
(day for instance), and P_{t-1} the price of the previous time frame.
The log-return at time t is defined as:
y_t = \log( \frac{P_t}{P_{t-1}} )
A univariate heteroscedastic GMM using Bayesian regularization
(as described in mclust::priorControl()) is fitted to the observed
log-returns. The number of mixture components is automatically selected
by BIC, unless specified with the optional G argument.
Returns an object of class 'GMMlogreturn'.
Luca Scrucca
Scrucca L. (2024) Entropy-based volatility analysis of financial log-returns using Gaussian mixture models. Entropy, 26(11), 907. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/e26110907")}
VaR.GMMlogreturn(), ES.GMMlogreturn().
data(gold)
head(gold)
mod = GMMlogreturn(gold$log.returns)
summary(mod)
plot(mod, what = "density", data = gold$log.returns,
xlab = "log-returns", col = 4, lwd = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.