GMMlogreturn: Modeling log-returns distribution via Gaussian Mixture Models

View source: R/GMM_finance.R

GMMlogreturnR Documentation

Modeling log-returns distribution via Gaussian Mixture Models

Description

Gaussian mixtures for modeling the distribution of financial log-returns.

Usage

GMMlogreturn(y, ...)

## S3 method for class 'GMMlogreturn'
summary(object, ...)

Arguments

y

A numeric vector providing the log-returns of a financial stock.

...

Further arguments passed to densityMclustBounded(). For a full description of available arguments see the corresponding help page.

object

An object of class 'GMMlogreturn'.

Details

Let P_t be the price of a financial stock for the current time frame (day for instance), and P_{t-1} the price of the previous time frame. The log-return at time t is defined as:

y_t = \log( \frac{P_t}{P_{t-1}} )

A univariate heteroscedastic GMM using Bayesian regularization (as described in mclust::priorControl()) is fitted to the observed log-returns. The number of mixture components is automatically selected by BIC, unless specified with the optional G argument.

Value

Returns an object of class 'GMMlogreturn'.

Author(s)

Luca Scrucca

References

Scrucca L. (2024) Entropy-based volatility analysis of financial log-returns using Gaussian mixture models. Entropy, 26(11), 907. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/e26110907")}

See Also

VaR.GMMlogreturn(), ES.GMMlogreturn().

Examples

data(gold)
head(gold)
mod = GMMlogreturn(gold$log.returns)
summary(mod)
plot(mod, what = "density", data = gold$log.returns,
     xlab = "log-returns", col = 4, lwd = 2)


mclustAddons documentation built on April 3, 2025, 11:19 p.m.