| GaussianMixtureMEM | R Documentation |
A function implementing a fast and efficient Modal EM algorithm for Gaussian mixtures.
GaussianMixtureMEM(
data,
pro,
mu,
sigma,
control = list(eps = 1e-05, maxiter = 1000, stepsize = function(t) 1 - exp(-0.1 * t),
denoise = TRUE, alpha = 0.01, keep.path = FALSE),
...
)
data |
A numeric vector, matrix, or data frame of observations.
Categorical variables are not allowed. If a matrix or data frame, rows
correspond to observations ( |
pro |
A |
mu |
A |
sigma |
A |
control |
A list of control parameters:
|
... |
Further arguments passed to or from other methods. |
Returns a list containing the following elements:
n The number of input data points.
d The number of variables/features.
parameters The Gaussian mixture parameters.
iter The number of iterations of MEM algorithm.
nmodes The number of modes estimated by the MEM algorithm.
modes The coordinates of modes estimated by MEM algorithm.
path If requested, the coordinates of full paths to modes for each data point.
logdens The log-density at the estimated modes.
logvol The log-volume used for denoising (if requested).
classification The modal clustering classification of input data points.
Luca Scrucca
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi: 10.1002/sam.11527")}
MclustMEM().
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.