plot.MclustMEM | R Documentation |
Plots for MclustMEM
objects.
## S3 method for class 'MclustMEM'
plot(
x,
dimens = NULL,
addDensity = TRUE,
addPoints = TRUE,
symbols = NULL,
colors = NULL,
cex = NULL,
labels = NULL,
cex.labels = NULL,
gap = 0.2,
...
)
x |
An object of class |
dimens |
A vector of integers specifying the dimensions of the coordinate projections. |
addDensity |
A logical indicating whether or not to add density estimates to the plot. |
addPoints |
A logical indicating whether or not to add data points to the plot. |
symbols |
Either an integer or character vector assigning a plotting
symbol to each unique class in |
colors |
Either an integer or character vector assigning a color to
each unique class in |
cex |
A vector of numerical values specifying the size of the plotting
symbol for each unique class in |
labels |
A vector of character strings for labelling the variables. The
default is to use the column dimension names of |
cex.labels |
A numerical value specifying the size of the text labels. |
gap |
A numerical argument specifying the distance between subplots
(see |
... |
Further arguments passed to or from other methods. |
No return value, called for side effects.
Luca Scrucca
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi: 10.1002/sam.11527")}
MclustMEM()
.
# 1-d example
GMM <- Mclust(iris$Petal.Length)
MEM <- MclustMEM(GMM)
plot(MEM)
# 2-d example
data(Baudry_etal_2010_JCGS_examples)
GMM <- Mclust(ex4.1)
MEM <- MclustMEM(GMM)
plot(MEM)
plot(MEM, addPoints = FALSE)
plot(MEM, addDensity = FALSE)
# 3-d example
GMM <- Mclust(ex4.4.2)
MEM <- MclustMEM(GMM)
plot(MEM)
plot(MEM, addPoints = FALSE)
plot(MEM, addDensity = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.