Nothing
# mcs: sublist of mod components to be sampled in a block
# e: environment of create_sampler
create_mc_block <- function(mcs, e=parent.frame()) {
type <- "block"
name <- "coef_"
debug <- any(b_apply(mcs, `[[`, "debug"))
if (e$family[["family"]] == "gamma") {
modus <- "gamma" # model for log(mean) of gamma
} else if (all(s_apply(mcs, `[[`, "name") %in% names(e[["Vmod"]]))) {
if (e$family[["family"]] == "gaussian_gamma")
modus <- "vargamma" # model for log(var) of gaussian and log(mean) of gamma
else
modus <- "var" # model for log(var) of gaussian
} else {
modus <- "regular" # model for mean of gaussian/binomial/...
}
if (e$control[["auto.order.block"]]) {
mcs <- local({
# order the components such that sparse matrices come first; may help find a better Cholesky permutation
o <- unname(which(vapply(mcs, \(mc) isDiagonal(mc[["X"]]), TRUE))) # start with diagonal matrices
if (length(o))
o <- c(o, seq_along(mcs)[-o][order(vapply(mcs[-o], \(mc) sparsity(mc[["X"]]), 1), decreasing=TRUE)])
else
o <- order(vapply(mcs, \(mc) sparsity(mc[["X"]]), 1), decreasing=TRUE)
mcs[o]
})
}
X <- matrix(0, e[["n"]], 0L) # block design matrix
ind <- 0L
for (mc in mcs) {
if (mc[["type"]] == "gen" && mc[["gl"]])
X <- cbind(X, mc[["X"]], zeroMatrix(e[["n"]], mc$glp[["q"]]))
else
X <- cbind(X, mc[["X"]])
mc$block.i <- (ind + 1L):ncol(X)
ind <- ncol(X)
}
rm(ind)
X <- economizeMatrix(X, check=FALSE)
q <- ncol(X)
# template for (updating) blocked precision matrix
# each mc$Q for gen is either ddi or dsC; the same holds true for mc$Q0 for reg and mec
get_Q <- function(mc) if (mc[["type"]] == "gen") mc[["Q"]] else mc[["Q0"]]
if (all(b_apply(mcs, \(mc) class(get_Q(mc))[[1L]] == "ddiMatrix"))) {
QT <- Cdiag(unlst(lapply(mcs, \(mc) ddi_diag(get_Q(mc)))))
} else {
QT <- local({
x <- NULL
i <- NULL
size <- 0L
p <- 0L
for (mc in mcs) {
Q <- get_Q(mc)
if (class(Q)[1L] == "ddiMatrix") {
x <- c(x, ddi_diag(Q))
i <- c(i, size + seq_len(nrow(Q)) - 1L)
p <- c(p, p[length(p)] + seq_len(nrow(Q)))
} else {
x <- c(x, Q@x)
i <- c(i, size + Q@i)
p <- c(p, p[length(p)] + Q@p[-1L])
}
size <- size + nrow(Q)
}
new("dsCMatrix", i=i, p=p, x=x, uplo="U", Dim=c(size, size))
})
}
rm(get_Q)
# individual Q matrices no longer needed (we still have kron_prod closures)
for (mc in mcs) if (mc[["type"]] == "gen") rm("Q", envir=mc)
get_Qvector <- function(p, tau) {
Qvector <- NULL
for (mc in mcs)
if (mc[["type"]] == "gen")
Qvector <- c(Qvector, p[[mc$name_Q]])
else
Qvector <- c(Qvector, tau * mc[["Q0"]]@x)
Qvector
}
if (modus == "regular") {
# non-zero prior means of reg or mec components
nonzero.mean <- any(b_apply(mcs, \(mc) any(mc[["type"]] == c("reg", "mec")) && !mc[["zero.mean"]]))
if (nonzero.mean) {
Q0b0 <- numeric(q)
for (mc in mcs) {
if (any(mc[["type"]] == c("reg", "mec")) && !mc[["zero.mean"]])
Q0b0[mc$block.i] <- mc[["Q0b0"]]
}
}
}
if (is.null(e$control[["CG"]])) {
if (e[["modeled.Q"]]) {
XX <- crossprod_sym(X, crossprod_sym(Cdiag(runif(e[["n"]], 0.9, 1.1)), e[["Q0"]]))
} else {
XX <- economizeMatrix(crossprod_sym(X, e[["Q0"]]),
symmetric=TRUE, drop.zeros=TRUE
)
}
# derive constraint matrix, if any
if (any(b_apply(mcs, \(mc) !is.null(mc[["R"]])))) {
R <- zeroMatrix(0L, 0L)
r <- NULL
for (mc in mcs) {
if (is.null(mc[["R"]])) {
if (mc[["type"]] == "gen" && mc[["gl"]])
R <- rbind(R, zeroMatrix(mc[["q"]] + mc$glp[["q"]], ncol(R)))
else
R <- rbind(R, zeroMatrix(mc[["q"]], ncol(R)))
} else {
if (mc[["type"]] == "gen" && mc[["gl"]]) {
R <- bdiag(R, mc$glp[["R"]])
r <- c(r, rep(if (is.null(mc$glp[["r"]])) 0 else mc$glp[["r"]], ncol(mc$glp[["R"]])))
} else {
R <- bdiag(R, mc[["R"]])
r <- c(r, if (is.null(mc[["r"]])) rep(0, ncol(mc[["R"]])) else mc[["r"]])
}
}
}
if (nrow(R) != q) stop("incompatible dimensions of design and constraint matrices")
# TODO remove individual R matrices as they are not needed in the single block sampler
# add support for additional constraints defined over the whole coefficient vector
# In the case of constraints the XX + Q matrix often becomes singular
# sampling from such a IGMRF can be done by first adding a multiple of tcrossprod(R) to it (Rue and Held, 2005)
# most convenient is to add it to XX;
# But this is not always required. Better add as little as is necessary to get pd (takes up lots of memory for lengthy random walks ...)
# Another option is to add a multiple of I to XX + Q and correct with MH
} else {
R <- NULL
}
if (any(b_apply(mcs, \(mc) !is.null(mc[["S"]])))) {
S <- zeroMatrix(0L, 0L)
s <- NULL
for (mc in mcs) {
if (is.null(mc[["S"]]))
S <- rbind(S, zeroMatrix(mc[["q"]], ncol(S)))
else {
S <- bdiag(S, mc[["S"]])
s <- c(s, if (is.null(mc[["s"]])) rep(0, ncol(mc[["S"]])) else mc[["s"]])
}
}
if (nrow(S) != q) stop("incompatible dimensions of design and constraint matrices")
# TODO remove individual S matrices as they are not needed in the single block sampler
# add support for additional constraints defined over the whole coefficient vector
} else {
S <- NULL
}
if (modus == "regular") {
sparse_template(environment(), update.XX=e[["modeled.Q"]] || any(s_apply(mcs, `[[`, "type") == "mec"),
control=e[["control"]])
} else {
if (is.null(R)) {
# TODO include in X0 the fixed part of QT (from reg components)
mat_sum <- make_mat_sum(M0 = if (modus == "vargamma") 2 * XX else XX, M1=QT)
cholQ <- build_chol(mat_sum(QT))
} else {
stop("not supported: blocked sampler for variance model components or gamma/gaussian_gamma family with constraints")
}
}
} else {
# TODO check that the only constraints are IGMRF equality constraints
S <- NULL
CGsampler <- setup_CG_sampler(mbs=mcs, X=X, sampler=e, control=e$control[["CG"]])
}
if (e[["compute.weights"]]) {
# form the q_all x m matrix corresponding to the linear predictor as represented componentwise in linpred
# TODO do we really need to store both X and t(X) in this case?
linpred <- if (is.null(e[["linpred"]]))
economizeMatrix(t(X), strip.names=FALSE)
else
economizeMatrix(t(do.call(cbind, lapply(e[["linpred"]][names(mcs)], \(x) x[["Xnew"]]))), allow.tabMatrix=FALSE)
}
if (e[["prior.only"]]) return(environment())
# BEGIN draw function
draw <- if (debug) function(p) {browser()} else function(p) {}
if (modus == "var" || modus == "vargamma") {
if (!e[["single.V.block"]])
for (m in seq_along(mcs)) {
# TODO linpred function (NB name clash) --> apply exp() only once
# or exploit index design matrices to reduce cost of exp()
draw <- add(draw, bquote(p[["Q_"]] <- p[["Q_"]] * exp(mcs[[.(m)]]$lp(p))))
}
} else if (e[["single.block"]]) {
if (e[["e.is.res"]])
draw <- add(draw, quote(p$e_ <- e$y_eff()))
# otherwise p$e_ = e$y_eff() = 0
} else {
for (m in seq_along(mcs)) {
# residuals could also be computed using the block X,
# but this way it is usually faster due to more efficient matrix types
if (e[["e.is.res"]])
draw <- add(draw, bquote(mcs[[.(m)]]$lp_update(p[["e_"]], TRUE, p)))
else
draw <- add(draw, bquote(mcs[[.(m)]]$lp_update(p[["e_"]], FALSE, p)))
}
}
draw <- draw |>
add(bquote(tau <- .(if (e[["sigma.fixed"]]) 1 else quote(1 / p[["sigma_"]]^2)))) |>
# update the block-diagonal joint precision matrix
add(quote(attr(QT, "x") <- get_Qvector(p, tau)))
if (modus == "regular") {
if (!is.null(S)) { # need to reconstruct coef_ as input to TMVN sampler
# TODO store coef_ component and only replace the subcomponents with PX
# and check whether this works in case of gen component with gl=TRUE
draw <- add(draw, quote(
for (mc in mcs) p[["coef_"]][mc$block.i] <- p[[mc$name]]
))
}
# update mec component columns of X
# TODO more efficient update of only those elements that can change (for dgC or matrix X)
for (mc in mcs)
if (mc[["type"]] == "mec")
draw <- add(draw, bquote(X[, mcs[[.(mc[["name"]])]]$block.i] <- p[[.(mc[["name_X"]])]]))
if (e[["single.block"]] && !e[["modeled.Q"]] && !any(s_apply(mcs, `[[`, "type") == "mec") && e$family[["link"]] != "probit") {
Xy <- crossprod_mv(X, e[["Q0"]] %m*v% e$y_eff())
if (nonzero.mean) {
Xy <- Xy + Q0b0
rm(Q0b0)
}
} else {
if (nonzero.mean)
draw <- add(draw, quote(Xy <- crossprod_mv(X, e$Q_e(p)) + Q0b0))
else
draw <- add(draw, quote(Xy <- crossprod_mv(X, e$Q_e(p))))
}
if (is.null(e$control[["CG"]])) {
if (e[["modeled.Q"]]) {
if (e[["Q0.type"]] == "symm")
draw <- add(draw, quote(XX <- crossprod_sym(X, p[["QM_"]])))
else {
cps_template <- NULL
if (inherits(X, "dgCMatrix")) {
tryCatch(
cps_template <- sparse_crossprod_sym_template(X, e$control[["max.size.cps.template"]]),
error = function(e) {
# template too large
NULL
}
)
}
if (is.null(cps_template)) {
draw <- add(draw, quote(XX <- crossprod_sym(X, p[["Q_"]])))
} else {
draw <- add(draw, quote(XX <- cps_template(p[["Q_"]])))
}
}
} else if (any(s_apply(mcs, `[[`, "type") == "mec")) {
draw <- add(draw, quote(XX <- crossprod_sym(X, e[["Q0"]])))
}
draw <- add(draw, quote(Qlist <- update(XX, QT, 1, 1/tau)))
if (e$control[["cMVN.sampler"]]) {
draw <- add(draw, bquote(coef <- MVNsampler$draw(p, Xy=Xy, X=X, QT=Qlist[["Q"]])[[.(name)]]))
} else {
draw <- add(draw, bquote(coef <- MVNsampler$draw(p, .(if (e[["sigma.fixed"]]) 1 else quote(p[["sigma_"]])), Q=Qlist[["Q"]], Imult=Qlist[["Imult"]], Xy=Xy)[[.(name)]]))
}
} else {
draw <- add(draw, bquote(CGstart <- numeric(.(q))))
for (mc in mcs)
draw <- add(draw, bquote(CGstart[mcs[[.(mc[["name"]])]]$block.i] <- p[[.(mc[["name"]])]]))
draw <- add(draw, quote(coef <- CGsampler$draw(p, Xy, X, QT, e, start=CGstart)))
}
} else {
if (modus == "var" || modus == "vargamma") { # variance modelling
if (e[["single.V.block"]])
draw <- add(draw, bquote(vkappa <- .(if (e[["sigma.fixed"]]) 0.5 else quote(0.5/p[["sigma_"]]^2)) * p[["e_"]]^2))
else
draw <- add(draw, bquote(vkappa <- .(if (e[["sigma.fixed"]]) 0.5 else quote(0.5/p[["sigma_"]]^2)) * p[["e_"]]^2 * p[["Q_"]]))
}
if (modus == "gamma") {
if (e$family[["alpha.fixed"]]) {
alpha <- e$family$get_shape()
if (e[["single.block"]]) {
kappa <- alpha * e[["y"]]
} else {
kappa0 <- alpha * e[["y"]]
draw <- add(draw, quote(kappa <- kappa0 * exp(-p[["e_"]])))
}
} else {
draw <- add(draw, quote(alpha <- e[["family"]]$get_shape(p)))
if (e[["single.block"]])
draw <- add(draw, quote(kappa <- alpha * e[["y"]]))
else
draw <- add(draw, quote(kappa <- alpha * e[["y"]] * exp(-p[["e_"]])))
}
} else if (modus == "vargamma") {
if (e$family[["alpha.fixed"]]) {
alpha <- e[["family"]]$get_shape()
if (e[["single.V.block"]]) {
kappa <- alpha * e$family[["sigmasq"]]
} else {
kappa0 <- alpha * e$family[["sigmasq"]]
draw <- add(draw, quote(kappa <- kappa0 * p[["Q_"]]))
}
} else {
draw <- add(draw, quote(alpha <- e[["family"]]$get_shape(p)))
if (e[["single.V.block"]]) {
draw <- add(draw, quote(kappa <- alpha * e$family[["sigmasq"]]))
} else {
draw <- add(draw, quote(kappa <- alpha * e$family[["sigmasq"]] * p[["Q_"]]))
}
}
}
draw <- add(draw, quote(cholQ$update(mat_sum(QT)))) # TODO if only reg components cholQ is fixed
if (modus == "var" || modus == "vargamma")
draw <- add(draw, bquote(Hz <- crossprod_mv(X, rMLiG(.(e[["n"]]), 0.5, vkappa))))
if (modus == "gamma")
draw <- add(draw, bquote(Hz <- crossprod_mv(X, rMLiG(.(e[["n"]]), alpha, kappa))))
else if (modus == "vargamma")
draw <- add(draw, bquote(Hz <- Hz + crossprod_mv(X, rMLiG(.(e[["n"]]), alpha, kappa))))
# prior contributions from mcs
draw <- add(draw, quote(
for (m in seq_along(mcs)) {
mc <- mcs[[m]]
switch(mc[["type"]],
reg =
if (mc[["informative.prior"]]) {
if (mc[["zero.mean"]])
z <- rMLiG(mc[["q"]], mc$prior[["a"]], mc$prior[["a"]])
else
z <- rMLiG(mc[["q"]], mc$prior[["a"]], mc$prior[["a"]] * exp(sqrt(mc$prior$precision/mc$prior$a) * mc$prior$mean))
Hz[mc$block.i] <- Hz[mc$block.i] + sqrt(mc$prior$precision/mc$prior[["a"]]) * z
},
gen = {
z <- rMLiG(mc[["q"]], mc[["a"]], mc[["a"]])
Hz[mc$block.i] <- Hz[mc$block.i] + z / (p[[mc$name_sigma]] * sqrt(mc[["a"]]))
},
stop("only reg and gen components supported")
)
}
))
draw <- add(draw, quote(coef <- cholQ$solve(Hz)))
}
# split coef and assign to the separate coefficient batches
for (m in seq_along(mcs)) {
if (mcs[[m]]$type == "gen" && mcs[[m]]$gl) {
draw <- draw |>
add(bquote(u <- coef[mcs[[.(m)]]$block.i])) |>
add(bquote(p[[.(mcs[[m]]$name)]] <- u[mcs[[.(m)]]$i.v])) |>
add(bquote(p[[.(mcs[[m]]$name_gl)]] <- u[mcs[[.(m)]]$i.alpha]))
} else {
draw <- add(draw, bquote(p[[.(mcs[[m]]$name)]] <- coef[mcs[[.(m)]]$block.i]))
}
if (modus == "var" || modus == "vargamma") {
if (e[["single.V.block"]])
draw <- add(draw, bquote(p[["Q_"]] <- exp(-mcs[[.(m)]]$lp(p))))
else
draw <- add(draw, bquote(p[["Q_"]] <- p[["Q_"]] * exp(-mcs[[.(m)]]$lp(p))))
} else {
if (e[["e.is.res"]]) {
draw <- add(draw, bquote(mcs[[.(m)]]$lp_update(p[["e_"]], FALSE, p)))
} else {
if (m == 1L && e[["single.block"]]) {
# in this case p$e_ = e$y_eff() = 0
draw <- add(draw, quote(p$e_ <- mcs[[1L]]$lp(p)))
} else {
draw <- add(draw, bquote(mcs[[.(m)]]$lp_update(p[["e_"]], TRUE, p)))
}
}
}
}
if (e[["compute.weights"]]) {
# TODO solve-sparse method that returns dense
draw <- add(draw, quote(p$weights_ <- X %m*m% as.matrix(MVNsampler$cholQ$solve(linpred))))
if (e[["modeled.Q"]]) {
if (e[["Q0.type"]] == "symm")
draw <- add(draw, quote(p$weights_ <- p[["QM_"]] %m*m% p[["weights_"]]))
else
draw <- add(draw, quote(p$weights_ <- p[["Q_"]] * p[["weights_"]]))
} else {
if (e[["Q0.type"]] != "unit") {
draw <- add(draw, quote(p$weights_ <- e[["Q0"]] %m*m% p[["weights_"]]))
}
}
}
draw <- add(draw, quote(p))
# END draw function
start <- function(p) {}
if (is.null(e$control[["CG"]]) && !e$control[["cMVN.sampler"]]) {
if (modus == "regular") {
start <- add(start, bquote(coef <- MVNsampler$start(p, e[["scale.sigma"]])[[.(name)]]))
} else {
# account for scaling of covariates
start <- add(start, bquote(coef <- Crnorm(.(q)) / colwise_maxabs(X)))
}
start <- add(start, quote(
for (mc in mcs) {
if (mc[["type"]] == "gen" && mc[["gl"]]) {
u <- coef[mc$block.i]
if (is.null(p[[mc$name]])) p[[mc$name]] <- u[mc$i.v]
if (is.null(p[[mc$name_gl]])) p[[mc$name_gl]] <- u[mc$i.alpha]
} else {
if (is.null(p[[mc$name]])) p[[mc$name]] <- coef[mc$block.i]
}
}
))
} else {
start <- add(start, quote(
for (mc in mcs) {
if (mc[["type"]] == "gen" && mc[["fastGMRFprior"]]) {
Qv <- rexp(1L)
if (is.null(mc$rGMRFprior))
setup_priorGMRFsampler(mc, Qv)
p[[mc[["name"]]]] <- mc$rGMRFprior(Qv)
} else {
p[[mc[["name"]]]] <- Crnorm(mc[["q"]], sd=e[["scale.sigma"]])
}
}
))
}
# TODO check formats of user-provided start values
start <- add(start, quote(p))
rm(mc)
environment()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.