Nothing
subnatSE_source_data <- readRDS("inst/data-raw/subnatSE_source_ipums_data.RDS")
subnatSE_source_data <- subnatSE_source_data %>% dplyr::filter(Country!="Kenya") # remove admin-1 level data for Kenya. No longer utilised.
kenya_data <- readRDS("inst/data-raw/kenya_admin2_FPsource.RDS") %>% # admin-2 level data for Kenya.
dplyr::rename(Region = region,
sector_categories = sector_category) %>%
dplyr::select(!Method_collapse)
subnat_FPsource_data <- subnatSE_source_data %>%
dplyr::ungroup() %>%
dplyr::select(all_of(colnames(kenya_data))) %>%
dplyr::bind_rows(kenya_data) %>%
dplyr::filter(Country %in% c("Afghanistan","Benin","Burkina Faso","Cameroon",
"Congo", "Congo Democratic Republic", "Cote d'Ivoire",
"Ethiopia", "Ghana","Guinea","India","Kenya", "Liberia", "Madagascar",
"Malawi","Mali", "Mozambique", "Myanmar", "Nepal", "Niger", "Nigeria", "Pakistan",
"Philippines", "Rwanda", "Senegal", "Sierra Leone", "Togo", "Tanzania", "Uganda", "Zimbabwe")) %>%
dplyr::mutate(Region = stringr::str_to_title(Region)) %>%
dplyr::mutate(Region = stringr::str_replace_all(Region, "[[:punct:]]", " "))
FP_source_tmp <- subnat_FPsource_data %>%
dplyr::filter(Country=="Rwanda") %>%
dplyr::mutate(Region = dplyr::case_when(Region == "Ouest" ~ "West",
Region == "Nord" ~ "North",
Region == "Sud" ~ "South",
Region == "Est" ~ "East",
Region == "Ville de Kigali" ~ "Kigali",
Region == "Kigali City" ~ "Kigali",
TRUE ~ as.character(Region))) %>%
dplyr::filter(average_year > 2008) # removes old regions
FP_source_data_wide <- subnat_FPsource_data %>%
dplyr::filter(Country!="Rwanda")
FP_source_data_wide <- FP_source_data_wide %>%
merge(FP_source_tmp, all = TRUE)
# Replace issues with Nigeria names
FP_source_tmp <- FP_source_data_wide %>%
dplyr::filter(Country=="Nigeria") %>%
dplyr::mutate(Region = dplyr::case_when(Region == "Northeast" ~ "North East",
Region == "Northwest" ~ "North West",
Region == "Southeast" ~ "South East",
Region == "Southwest" ~ "South West",
TRUE ~ as.character(Region)))
FP_source_data_wide <- FP_source_data_wide %>%
dplyr::filter(Country!="Nigeria")
# Replace issues with Burkina Faso names
FP_source_tmp <- FP_source_data_wide %>%
dplyr::filter(Country=="Burkina Faso") %>%
dplyr::mutate(Region = dplyr::case_when(Region == "Nord" ~ "North",
Region == "Est" ~ "East",
Region == "Sud" ~ "South",
Region == "Ouest" ~ "West",
Region == "Centre-Sud" ~ "Central/South",
Region == "Ouagadougou" ~ "Centre Including Ouagadougou",
TRUE ~ as.character(Region)))
FP_source_data_wide <- FP_source_data_wide %>%
dplyr::filter(Country!="Burkina Faso")
FP_source_data_wide <- FP_source_data_wide %>%
merge(FP_source_tmp, all = TRUE)
# Replace issues with Cote d'Ivoire names
FP_source_tmp <- FP_source_data_wide %>%
dplyr::filter(Country=="Cote d'Ivoire") %>%
dplyr::mutate(Region = dplyr::case_when(Region == "Center-East" ~ "Center East",
Region == "Center-North" ~ "Center North",
Region == "Center-West" ~ "Center West",
Region == "Center-South" ~ "Center South",
TRUE ~ as.character(Region)))
FP_source_data_wide <- FP_source_data_wide %>%
dplyr::filter(Country!="Cote d'Ivoire")
FP_source_data_wide <- FP_source_data_wide %>%
merge(FP_source_tmp, all = TRUE)
subnat_FPsource_data <- FP_source_data_wide %>% dplyr::arrange(Country, Region, Method, average_year)
usethis::use_data(subnat_FPsource_data, overwrite = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.