| aic | R Documentation |
Calculate information criteria for diagnostic models not estimated with full
Markov chain Monte Carlo (i.e., with method = "optim"). Available
information include the Akaike information criterion (AIC; Akaike, 1973) and
the Bayesian information criterion (BIC; Schwarz, 1978).
aic(x, ..., force = FALSE)
bic(x, ..., force = FALSE)
x |
A measrdcm object estimated with
|
... |
Unused. |
force |
If the criterion has already been added to the
model object with |
The numeric value of the information criterion.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Proceedings of the Second International Symposium on Information Theory (pp. 267-281). Akademiai Kiado.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/aos/1176344136")}
model_spec <- dcm_specify(
qmatrix = dcmdata::mdm_qmatrix,
identifier = "item"
)
model <- dcm_estimate(
dcm_spec = model_spec,
data = dcmdata::mdm_data,
identifier = "respondent",
method = "optim",
seed = 63277
)
aic(model)
bic(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.