| yens_q3 | R Documentation |
Calculate the Q3 statistic to evaluate the assumption of independent items.
yens_q3(x, ..., crit_value = 0.2, summary = NULL)
x |
A measrdcm object. |
... |
Unused. |
crit_value |
The critical value threshold for flagging the residual correlation of a given item pair. The default is 0.2, as described by Chen and Thissen (1997). |
summary |
A summary statistic to be returned. Must be one of |
Psychometric models assume that items are independent of each other, conditional on the latent trait. The Q3 statistic (Yen, 1984) is used to evaluate this assumption. For each observed item response, we calculate the residual between the model predicted score and the observed score and then estimate correlations between the residuals across items. Each residual correlation is a Q3 statistic.
Often, a critical values is used to flag a residual correlation above a given threshold (e.g., Chen & Thissen, 1997). Alternatively, we may use a summary statistic such as the maximum Q3 statistic (Q3,max; Christensen et al., 2017), or the mean-adjusted maximum Q3 statistic (Q3,*; Marais, 2013).
If summary = NULL, a tibble with the residual correlation and
flags for all item pairs. Otherwise, a numeric value representing the
requested summary statistic.
Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22(3), 265-389. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3102/10769986022003265")}
Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen's Q3: Identification of local dependence in the Rasch model using residual correlations. Applied Psychological Measurement, 41(3), 178-194. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0146621616677520")}
Marais, I. (2013). Local dependence. In K. B. Christensen, S. Kreiner, & M. Mesbah (Eds.), Rasch models in health (pp. 111-130). Wiley.
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8(2), 125-145. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/014662168400800201")}
model_spec <- dcm_specify(
qmatrix = dcmdata::mdm_qmatrix,
dentifier = "item"
)
model <- dcm_estimate(
dcm_spec = model_spec,
data = dcmdata::mdm_data,
identifier = "respondent",
method = "optim",
seed = 63277
)
yens_q3(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.