Hox02 | R Documentation |
Twenty stimulated studies on standardized mean difference and one continuous study characteristic reported by Hox (2002).
data(Hox02)
The variables are:
Study number
Effect size (standardized mean difference)
Sampling variance of the effect size
Duration of the experimental intervention in terms of weeks
Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, N.J.: Lawrence Erlbaum Associates.
Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13, 182-202.
data(Hox02)
#### ML estimation method
## Random-effects meta-analysis
summary( meta(y=yi, v=vi, data=Hox02, I2=c("I2q", "I2hm"), intervals.type="LB") )
## Fixed-effects meta-analysis
summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=0,
model.name="Fixed effects model") )
## Mixed-effects meta-analysis with "weeks" as a predictor
## Request likelihood-based CI
summary( meta(y=yi, v=vi, x=weeks, data=Hox02, intervals.type="LB",
model.name="Mixed effects meta analysis with LB CI") )
#### REML estimation method
## Random-effects meta-analysis with REML
summary( VarComp <- reml(y=yi, v=vi, data=Hox02) )
## Extract the variance component
VarComp_REML <- matrix( coef(VarComp), ncol=1, nrow=1 )
## Meta-analysis by treating the variance component as fixed
summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=VarComp_REML) )
## Mixed-effects meta-analysis with "weeks" as a predictor
## Request Wald CI
summary( reml(y=yi, v=vi, x=weeks, intervals.type="z",
data=Hox02, model.name="REML with LB CI") )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.