Hunter83: Fourteen Studies of Correlation Matrices reported by Hunter...

Hunter83R Documentation

Fourteen Studies of Correlation Matrices reported by Hunter (1983)

Description

This dataset includes fourteen studies of Correlation Matrices reported by Hunter (1983)

Usage

data(Hunter83)

Details

A list of data with the following structure:

data

A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating

n

A vector of sample sizes

Source

Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, & J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.

Examples


data(Hunter83)

#### Fixed-effects model
## First stage analysis
fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM",
                 model.name="TSSEM1 fixed effects model")
summary(fixed1)

#### Second stage analysis
## Model without direct effect from Ability to Supervisor
## A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W",0,0,0,"0.1*J2W","0.1*J2S",
##                         0,0,0,"0.1*W2S",0,0,0,0),
##                         type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE)

## ## This step is not necessary but it is useful for inspecting the model.
## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor") 
## A1

## S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"),
##                       type="Diag", as.mxMatrix=FALSE)
## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor") 
## S1

################################################################################
## Model specification in lavaan model syntax
## The "ind" effect can be defined within the syntax
model1 <- "## Regression paths
           Job_knowledge ~ A2J*Ability
           Work_sample ~ A2W*Ability + J2W*Job_knowledge
           Supervisor ~ J2S*Job_knowledge + W2S*Work_sample

           ## Fix the variance of Ability at 1
           Ability ~~ 1*Ability

           ## Label the error variances of the dependent variables
           Job_knowledge ~~ VarE_J*Job_knowledge
           Work_sample ~~ VarE_W*Work_sample
           Supervisor ~~ VarE_S*Supervisor

           ## Define an indirect effect
           ind := A2J*J2S+A2J*J2W*W2S+A2W*W2S"

## Display the model
plot(model1, layout="spring", sizeMan=10)

RAM1 <- lavaan2RAM(model1, obs.variables=c("Ability","Job_knowledge",
                   "Work_sample","Supervisor"))
RAM1

################################################################################
fixed2 <- tssem2(fixed1, RAM=RAM1, intervals.type="z",
                 diag.constraints=FALSE,
                 model.name="TSSEM2 fixed effects model")
summary(fixed2)

## Display the model with the parameter estimates
plot(fixed2, layout="spring")

## Coefficients
coef(fixed2)

## VCOV based on parametric bootstrap
vcov(fixed2)

#### Random-effects model with diagonal elements only
## First stage analysis
random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM", RE.type="Diag", 
                  acov="weighted", model.name="TSSEM1 random effects model")
summary(random1)

model2 <- "## Regression paths
           Job_knowledge ~ A2J*Ability
           Work_sample ~ A2W*Ability + J2W*Job_knowledge
           Supervisor ~ J2S*Job_knowledge + W2S*Work_sample

           ## Fix the variance of Ability at 1
           Ability ~~ 1*Ability

           ## Label the error variances of the dependent variables
           Job_knowledge ~~ VarE_J*Job_knowledge
           Work_sample ~~ VarE_W*Work_sample
           Supervisor ~~ VarE_S*Supervisor"

RAM2 <- lavaan2RAM(model2, obs.variables=c("Ability","Job_knowledge",
                   "Work_sample","Supervisor"))
RAM2

## Second stage analysis
## Model without direct effect from Ability to Supervisor

## The "ind" effect is defined in tssem2().
random2 <- tssem2(random1, RAM=RAM2, intervals.type="LB",
                  diag.constraints=FALSE,
                  mx.algebras=
                      list(ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind")),
                  model.name="TSSEM2 random effects model")
                  
summary(random2)

## Display the model with the parameter estimates
plot(random2, layout="spring")


metaSEM documentation built on Sept. 30, 2024, 9:21 a.m.