DA: Optimization using Dragonfly Algorithm

Description Usage Arguments Details Value References See Also Examples

Description

This is the internal function that implements Dragonfly Algorithm. It is used to solve continuous optimization tasks. Users do not need to call it directly, but just use metaOpt.

Usage

1
2
DA(FUN, optimType = "MIN", numVar, numPopulation = 40, maxIter = 500,
  rangeVar)

Arguments

FUN

an objective function or cost function,

optimType

a string value that represent the type of optimization. There are two option for this arguments: "MIN" and "MAX". The default value is "MIN", which the function will do minimization. Otherwise, you can use "MAX" for maximization problem. The default value is "MIN".

numVar

a positive integer to determine the number variables.

numPopulation

a positive integer to determine the number populations. The default value is 40.

maxIter

a positive integer to determine the maximum number of iterations. The default value is 500.

rangeVar

a matrix (2 \times n) containing the range of variables, where n is the number of variables, and first and second rows are the lower bound (minimum) and upper bound (maximum) values, respectively. If all variable have equal upper bound, you can define rangeVar as matrix (2 \times 1).

Details

This algorithm was proposed by (Mirjalili, 2015). The main inspiration of the DA algorithm originates from the static and dynamic swarming behaviours of dragonflies in nature. Two essential phases of optimization, exploration and exploitation, are designed by modelling the social interaction of dragonflies in navigating, searching for foods, and avoiding enemies when swarming dynamically or statistically.

In order to find the optimal solution, the algorithm follow the following steps.

Value

Vector [v1, v2, ..., vn] where n is number variable and vn is value of n-th variable.

References

Seyedali Mirjalili. 2015. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 4 (May 2015), 1053-1073. DOI=https://doi.org/10.1007/s00521-015-1920-1

See Also

metaOpt

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
##################################
## Optimizing the schewefel's problem 1.2 function

# define schewefel's problem 1.2 function as objective function
schewefels1.2 <- function(x){
  dim <- length(x)
  result <- 0
    for(i in 1:dim){
       result <- result + sum(x[1:i])^2
   }
  return(result)
}

## Define parameter
numVar <- 5
rangeVar <- matrix(c(-10,10), nrow=2)

## calculate the optimum solution using dragonfly algorithm
resultDA <- DA(schewefels1.2, optimType="MIN", numVar, numPopulation=20,
                 maxIter=100, rangeVar)

## calculate the optimum value using schewefel's problem 1.2 function
optimum.value <- schewefels1.2(resultDA)

metaheuristicOpt documentation built on June 19, 2019, 5:04 p.m.