Description Usage Arguments Details Value Author(s) References Examples
'deft' method is a meta-analytical approach to pool conclusion from multiple studies. More details please see references.
1 | deft_do(prepare, group_level, method = "FE")
|
prepare |
a result |
group_level |
level of subgroup, should be a character vector with
length 2 and the reference should put in the first. For example, if you
have 'Male' and 'Female' groups and want compare 'Female' with 'Male', then
should set |
method |
character string specifying whether a fixed- or a random/mixed-effects model should be fitted. A fixed-effects model (with or without moderators) is fitted when using |
About model fit, please see metafor::rma()
.
a list
which class is 'deft'.
Shixiang Wang w_shixiang@163.com
Fisher, David J., et al. "Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach?." bmj 356 (2017): j573.
Wang, Shixiang, et al. "The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients' sex." International journal of cancer (2019).
1 2 |
Loading required package: metafor
Loading required package: Matrix
Loading 'metafor' package (version 2.4-0). For an overview
and introduction to the package please type: help(metafor).
$all
$all$data
entry trial subgroup hr ci.lb ci.ub ni conf_q
1 Rizvi 2015-Male Rizvi 2015 Male 0.30 0.09 1.00 16 1.959964
2 Rizvi 2015-Female Rizvi 2015 Female 0.11 0.02 0.56 18 1.959964
3 Rizvi 2018-Male Rizvi 2018 Male 1.25 0.82 1.90 118 1.959964
4 Rizvi 2018-Female Rizvi 2018 Female 0.63 0.42 0.95 122 1.959964
5 Hellmann 2018-Male Hellmann 2018 Male 0.90 0.41 1.99 37 1.959964
6 Hellmann 2018-Female Hellmann 2018 Female 0.28 0.12 0.67 38 1.959964
yi sei
1 -1.2039728 0.6142831
2 -2.2072749 0.8500678
3 0.2231436 0.2143674
4 -0.4620355 0.2082200
5 -0.1053605 0.4030005
6 -1.2729657 0.4387290
$all$model
Fixed-Effects Model (k = 6)
I^2 (total heterogeneity / total variability): 73.53%
H^2 (total variability / sampling variability): 3.78
Test for Heterogeneity:
Q(df = 5) = 18.8865, p-val = 0.0020
Model Results:
estimate se zval pval ci.lb ci.ub
-0.3207 0.1289 -2.4883 0.0128 -0.5733 -0.0681 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
$subgroup
$subgroup$data
trial hr ci.lb ci.ub ni conf_q yi sei
1 Rizvi 2015 0.3666667 0.0469397 2.8641945 34 1.959964 -1.003302 1.0487893
2 Rizvi 2018 0.5040000 0.2805772 0.9053338 240 1.959964 -0.685179 0.2988460
3 Hellmann 2018 0.3111111 0.0967900 1.0000013 75 1.959964 -1.167605 0.5957285
$subgroup$model
Fixed-Effects Model (k = 3)
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 0.28
Test for Heterogeneity:
Q(df = 2) = 0.5657, p-val = 0.7536
Model Results:
estimate se zval pval ci.lb ci.ub
-0.7956 0.2589 -3.0737 0.0021 -1.3030 -0.2883 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
attr(,"class")
[1] "deft"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.