MIC | R Documentation |
It estimates the Maximal Information Coefficient (MIC) for a continuous predicted-observed dataset.
MIC(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list (default). |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
The MIC function is a wrapper for the mine_stat
function of the
minerva-package, a collection of Maximal Information-Based Nonparametric statistics (MINE).
See Reshef et al. (2011).
For the predicted-observed case (PO), the MIC is defined as follows:
\textrm{MIC}(D)=\max_{PO<B(n)} M(D)_{X,Y} = \max_{PO<B(n)} \frac{I^ * (D,P,O)} {log(\min{P,O})},
where
B(n)=n^{\alpha}
is the search-grid size,
I^*(D,P,O)
is the maximum mutual information over all grids P-by-O, of the distribution
induced by D on a grid having P and O bins (where the probability
mass on a cell of the grid is the fraction of points of D falling in that cell).
Albanese et al. (2013).
For the formula and more details, see online-documentation
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
Reshef, D., Reshef, Y., Finucane, H., Grossman, S., McVean, G., Turnbaugh, P.,
Lander, R., Mitzenmacher, M., and Sabeti, P. (2011). Detecting novel associations
in large datasets.
Science 334, 6062. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1126/science.1205438")}.
Albanese, D., M. Filosi, R. Visintainer, S. Riccadonna, G. Jurman, C. Furlanello.
minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers.
Bioinformatics (2013) 29(3):407-408. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/bts707")}.
eval_tidy
, defusing-advanced
mine_stat
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
MIC(obs = X, pred = Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.