MLA | R Documentation |
It estimates the MLA, the systematic error component to the Mean Squared Error (MSE), for a continuous predicted-observed dataset following Correndo et al. (2021).
MLA(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
The MLA represents the systematic (bias) component of the MSE. It is obtained via a symmetric decomposition of the MSE (invariant to predicted-observed orientation) using a symmetric regression line. The MLA is equal to the sum of systematic differences divided by the sample size (n). The greater the value the greater the bias of the predictions. For the formula and more details, see online-documentation
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
Correndo et al. (2021). Revisiting linear regression to test agreement in continuous predicted-observed datasets. Agric. Syst. 192, 103194. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")}
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
MLA(obs = X, pred = Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.