View source: R/mgplikelihoods.R
expme | R Documentation |
Integrated intensity over the region defined by [0, z]^c
for logistic, Huesler-Reiss, Brown-Resnick and extremal Student processes.
expme(
z,
par,
model = c("log", "neglog", "hr", "br", "xstud"),
method = c("TruncatedNormal", "mvtnorm", "mvPot")
)
z |
vector at which to estimate exponent measure |
par |
list of parameters |
model |
string indicating the model family |
method |
string indicating the package from which to extract the numerical integration routine |
numeric giving the measure of the complement of [0,z]
.
The list par
must contain different arguments depending on the model. For the Brown–Resnick model, the user must supply the conditionally negative definite matrix Lambda
following the parametrization in Engelke et al. (2015) or the covariance matrix Sigma
, following Wadsworth and Tawn (2014). For the Husler–Reiss model, the user provides the mean and covariance matrix, m
and Sigma
. For the extremal student, the covariance matrix Sigma
and the degrees of freedom df
. For the logistic model, the strictly positive dependence parameter alpha
.
## Not run:
# Extremal Student
Sigma <- stats::rWishart(n = 1, df = 20, Sigma = diag(10))[, , 1]
expme(z = rep(1, ncol(Sigma)), par = list(Sigma = cov2cor(Sigma), df = 3), model = "xstud")
# Brown-Resnick model
D <- 5L
loc <- cbind(runif(D), runif(D))
di <- as.matrix(dist(rbind(c(0, ncol(loc)), loc)))
semivario <- function(d, alpha = 1.5, lambda = 1) {
(d / lambda)^alpha
}
Vmat <- semivario(di)
Lambda <- Vmat[-1, -1] / 2
expme(z = rep(1, ncol(Lambda)), par = list(Lambda = Lambda), model = "br", method = "mvPot")
Sigma <- outer(Vmat[-1, 1], Vmat[1, -1], "+") - Vmat[-1, -1]
expme(z = rep(1, ncol(Lambda)), par = list(Lambda = Lambda), model = "br", method = "mvPot")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.