gev | R Documentation |
Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution
par |
vector of |
dat |
sample vector |
method |
string indicating whether to use the expected ( |
V |
vector calculated by |
n |
sample size |
p |
vector of probabilities |
gev.ll(par, dat) gev.ll.optim(par, dat) gev.score(par, dat) gev.infomat(par, dat, method = c('obs','exp')) gev.retlev(par, p) gev.bias(par, n) gev.Fscore(par, dat, method=c('obs','exp')) gev.Vfun(par, dat) gev.phi(par, dat, V) gev.dphi(par, dat, V)
gev.ll
: log likelihood
gev.ll.optim
: negative log likelihood parametrized in terms of location, log(scale)
and shape
in order to perform unconstrained optimization
gev.score
: score vector
gev.infomat
: observed or expected information matrix
gev.retlev
: return level, corresponding to the (1-p)
th quantile
gev.bias
: Cox-Snell first order bias
gev.Fscore
: Firth's modified score equation
gev.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM
gev.phi
: canonical parameter in the local exponential family approximation
gev.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Firth, D. (1993). Bias reduction of maximum likelihood estimates, Biometrika, 80(1), 27–38.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Cox, D. R. and E. J. Snell (1968). A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30, 248–275.
Cordeiro, G. M. and R. Klein (1994). Bias correction in ARMA models, Statistics and Probability Letters, 19(3), 169–176.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.